Skip to main content

Experimental Characterization of Protein Complex Structure, Dynamics, and Assembly

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Experimental methods for the characterization of protein complexes have been instrumental in achieving our current understanding of the protein universe and continue to progress with each year that passes. In this chapter, we review some of the most important tools and techniques in the field, covering the important points in X-ray crystallography, cryo-electron microscopy, NMR spectroscopy, and mass spectrometry. Novel developments are making it possible to study large protein complexes at near-atomic resolutions, and we also now have the ability to study the dynamics and assembly pathways of protein complexes across a range of sizes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81:644–645

    Article  CAS  PubMed  Google Scholar 

  2. Schrödinger E (1947) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge

    Google Scholar 

  3. Dronamraju KR (1999) Erwin Schrödinger and the origins of molecular biology. Genetics 153:1071–1076

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Fraenkel-Conrat H, Williams RC (1955) Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci U S A 41:690–698. https://doi.org/10.1073/pnas.41.10.690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  PubMed  Google Scholar 

  6. Schluenzen F, Tocilj A, Zarivach R et al (2000) Structure of functionally activated small ribosomal subunit at 3.3Å resolution. Cell 102:615–623. https://doi.org/10.1016/S0092-8674(00)00084-2

    Article  CAS  PubMed  Google Scholar 

  7. Ramakrishnan V, Wimberly BT, Brodersen DE et al (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339. https://doi.org/10.1038/35030006

    Article  PubMed  Google Scholar 

  8. Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4Å resolution. Science 289:905–920. https://doi.org/10.1126/science.289.5481.905

    Article  CAS  PubMed  Google Scholar 

  9. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246. https://doi.org/10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  10. Rajagopala SV, Sikorski P, Kumar A et al (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32:285–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939. https://doi.org/10.1021/ac00291a042

    Article  CAS  Google Scholar 

  12. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. https://doi.org/10.1126/science.2675315

    Article  CAS  PubMed  Google Scholar 

  13. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00172

  14. Wells JN, Bergendahl LT, Marsh JA (2016) Operon gene order is optimized for ordered protein complex assembly. Cell Rep 14:679–685. https://doi.org/10.1016/j.celrep.2015.12.085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Shieh Y-W, Minguez P, Bork P et al (2015) Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350:678–680. https://doi.org/10.1126/science.aac8171

    Article  CAS  PubMed  Google Scholar 

  16. Poulsen C, Holton S, Geerlof A et al (2010) Stoichiometric protein complex formation and over-expression using the prokaryotic native operon structure. FEBS Lett 584:669–674. https://doi.org/10.1016/j.febslet.2009.12.057

    Article  CAS  PubMed  Google Scholar 

  17. Ni QZ, Daviso E, Can TV et al (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:1933–1941. https://doi.org/10.1021/ar300348n

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Jia B, Jeon CO (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6:160196. https://doi.org/10.1098/rsob.160196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Norimatsu Y, Hasegawa K, Shimizu N, Toyoshima C (2017) Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 545:193–198. https://doi.org/10.1038/nature22357

    Article  CAS  PubMed  Google Scholar 

  20. Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc R Soc Math Phys Eng Sci 88:428–438. https://doi.org/10.1098/rspa.1913.0040

    Article  CAS  Google Scholar 

  21. Shi Y (2014) A glimpse of structural biology through X-ray crystallography. Cell 159:995–1014. https://doi.org/10.1016/j.cell.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  22. Neutze R, Wouts R, van der Spoel D et al (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–757. https://doi.org/10.1038/35021099

    Article  CAS  PubMed  Google Scholar 

  23. Taylor G (2003) The phase problem. Acta Crystallogr D Biol Crystallogr 59:1881–1890. https://doi.org/10.1107/S0907444903017815

    Article  PubMed  Google Scholar 

  24. Robertson JM (1936) An X-ray study of the phthalocyanines. Part II. Quantitative structure determination of the metal-free compound. J Chem Soc:1195–1209

    Google Scholar 

  25. Dauter Z (2005) Use of polynuclear metal clusters in protein crystallography. Comptes Rendus Chim 8:1808–1814. https://doi.org/10.1016/j.crci.2005.02.032

    Article  CAS  Google Scholar 

  26. Nozawa K, Schneider TR, Cramer P (2017) Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545:248–251. https://doi.org/10.1038/nature22328

    Article  CAS  PubMed  Google Scholar 

  27. Hendrickson W (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58. https://doi.org/10.1126/science.1925561

    Article  CAS  PubMed  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242. https://doi.org/10.1107/S0907444910045749

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Merk A, Bartesaghi A, Banerjee S et al (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Bai X, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57. https://doi.org/10.1016/j.tibs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  33. McMullan G, Chen S, Henderson R, Faruqi AR (2009) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143. https://doi.org/10.1016/j.ultramic.2009.04.002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Dainty JC, Shaw R (1975) Image science, principles, analysis and evaluation of photographic type imaging processes. Academic, London

    Google Scholar 

  35. McMullan G, Clark AT, Turchetta R, Faruqi AR (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416. https://doi.org/10.1016/j.ultramic.2009.07.004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Danev R, Buijsse B, Khoshouei M et al (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111:15635–15640. https://doi.org/10.1073/pnas.1418377111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Danev R, Baumeister W (2016) Cryo-EM single particle analysis with the Volta phase plate. elife 5:1–14. https://doi.org/10.7554/eLife.13046

    Article  Google Scholar 

  38. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat Commun 8:16099. https://doi.org/10.1038/ncomms16099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Bai X, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. elife. https://doi.org/10.7554/eLife.00461

  40. Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150. https://doi.org/10.1016/0304-3991(85)90069-5

    Article  CAS  Google Scholar 

  42. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530. https://doi.org/10.1016/j.jsb.2012.09.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Scheres SHW (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. elife 3:e03665

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sigworth FJ (1998) A maximum-likelihood approach to single-particle image refinement. J Struct Biol 122:328–339. https://doi.org/10.1006/jsbi.1998.4014

    Article  CAS  PubMed  Google Scholar 

  45. Scheres SHW, Gao H, Valle M et al (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29. https://doi.org/10.1038/nmeth992

    Article  PubMed  CAS  Google Scholar 

  46. Lyumkis D, Brilot AF, Theobald DL, Grigorieff N (2013) Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol 183:377–388. https://doi.org/10.1016/j.jsb.2013.07.005

    Article  PubMed  CAS  Google Scholar 

  47. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296. https://doi.org/10.1038/nmeth.4169

    Article  PubMed  CAS  Google Scholar 

  48. Wisedchaisri G, Reichow SL, Gonen T (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19:1381–1393. https://doi.org/10.1016/j.str.2011.09.001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Galaz-Montoya JG, Ludtke SJ (2017) The advent of structural biology in situ by single particle cryo-electron tomography. Biophys Rep 3:17–35. https://doi.org/10.1007/s41048-017-0040-0

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bharat TAM, Scheres SHW (2016) Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11:2054–2065. https://doi.org/10.1038/nprot.2016.124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Leschziner AE, Nogales E (2006) The orthogonal tilt reconstruction method: an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J Struct Biol 153:284–299. https://doi.org/10.1016/j.jsb.2005.10.012

    Article  PubMed  Google Scholar 

  52. Schur FKM, Obr M, Hagen WJH et al (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–508. https://doi.org/10.1126/science.aaf9620

    Article  CAS  PubMed  Google Scholar 

  53. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371. https://doi.org/10.1073/pnas.94.23.12366

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4:1245–1249. https://doi.org/10.1016/S0969-2126(96)00133-5

    Article  CAS  PubMed  Google Scholar 

  55. Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852. https://doi.org/10.1002/mrc.1256

    Article  CAS  Google Scholar 

  56. Zhang H, van Ingen H (2016) Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 38:75–82. https://doi.org/10.1016/j.sbi.2016.05.008

    Article  PubMed  CAS  Google Scholar 

  57. Liu D, Xu R, Cowburn D (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Methods Enzymol 462:151–175

    Article  PubMed  CAS  Google Scholar 

  58. Rosenzweig R, Farber P, Velyvis A et al (2015) ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc Natl Acad Sci U S A 112:e6872. https://doi.org/10.1073/pnas.1512783112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Frederick KK, Michaelis VK, Caporini MA et al (2017) Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proc Natl Acad Sci U S A 114:3642–3647. https://doi.org/10.1073/pnas.1619051114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Wells M, Tidow H, Rutherford TJ et al (2008) Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 105:5762–5767. https://doi.org/10.1073/pnas.0801353105

    Article  PubMed Central  PubMed  Google Scholar 

  61. Marsh JA, Dancheck B, Ragusa MJ et al (2010) Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094–1103. https://doi.org/10.1016/j.str.2010.05.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Mittag T, Marsh J, Grishaev A et al (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18:494–506. https://doi.org/10.1016/j.str.2010.01.020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Marsh JA, Teichmann SA, Forman-Kay JD (2012) Probing the diverse landscape of protein flexibility and binding. Curr Opin Struct Biol 22:643–650. https://doi.org/10.1016/j.sbi.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  64. Bozoky Z, Krzeminski M, Muhandiram R et al (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proc Natl Acad Sci U S A 110:E4427–E4436. https://doi.org/10.1073/pnas.1315104110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659–1659. https://doi.org/10.1038/1821659a0

    Article  CAS  Google Scholar 

  66. Hansen SK, Bertelsen K, Paaske B et al (2015) Solid-state NMR methods for oriented membrane proteins. Prog Nucl Magn Reson Spectrosc 88–89:48–85. https://doi.org/10.1016/j.pnmrs.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  67. Loquet A, Sgourakis NG, Gupta R et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279. https://doi.org/10.1038/nature11079

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Kaplan M, Cukkemane A, van Zundert GCP et al (2015) Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nat Methods 12:5–9. https://doi.org/10.1038/nmeth.3406

    Article  CAS  Google Scholar 

  69. Huang C, Kalodimos CG (2017) Structures of large protein complexes determined by nuclear magnetic resonance spectroscopy. Annu Rev Biophys 46:317–336. https://doi.org/10.1146/annurev-biophys-070816-033701

    Article  CAS  PubMed  Google Scholar 

  70. Song H, Hanlon N, Brown NR et al (2001) Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol Cell 7:615–626

    Article  CAS  PubMed  Google Scholar 

  71. Krusemark CJ, Frey BL, Belshaw PJ, Smith LM (2009) Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization. J Am Soc Mass Spectrom 20:1617–1625. https://doi.org/10.1016/j.jasms.2009.04.017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Radionova A, Filippov I, Derrick PJ (2016) In pursuit of resolution in time-of-flight mass spectrometry: a historical perspective. Mass Spectrom Rev 35:738–757. https://doi.org/10.1002/mas.21470

    Article  CAS  PubMed  Google Scholar 

  73. Hu Q, Noll RJ, Li H et al (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443. https://doi.org/10.1002/jms.856

    Article  CAS  PubMed  Google Scholar 

  74. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom Ion Process 136:167–180. https://doi.org/10.1016/0168-1176(94)04024-9

    Article  CAS  Google Scholar 

  75. El-Faramawy A, Siu KWM, Thomson BA (2005) Efficiency of nano-electrospray ionization. J Am Soc Mass Spectrom 16:1702–1707. https://doi.org/10.1016/j.jasms.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  76. Sobott F, Hernández H, McCammon MG et al (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407. https://doi.org/10.1021/ac0110552

    Article  CAS  PubMed  Google Scholar 

  77. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726. https://doi.org/10.1038/nprot.2007.73

    Article  PubMed  CAS  Google Scholar 

  78. Sobott F, Benesch JLP, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. J Biol Chem 277:38921–38929. https://doi.org/10.1074/jbc.M206060200

    Article  CAS  PubMed  Google Scholar 

  79. Laganowsky A, Reading E, Allison TM et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–175. https://doi.org/10.1038/nature13419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265. https://doi.org/10.1038/nature06942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Marsh JA, Hernández H, Hall Z et al (2013) Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153:461–470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Ahnert SE, Marsh JA, Hernández H et al (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350:aaa2245. https://doi.org/10.1126/science.aaa2245

    Article  CAS  PubMed  Google Scholar 

  83. Stengel F, Aebersold R, Robinson CV (2012) Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 11:R111.014027–R111.014027. https://doi.org/10.1074/mcp.R111.014027

    Article  CAS  PubMed  Google Scholar 

  84. Ward AB, Sali A, Wilson IA (2013) Integrative structural biology. Science 339:913–915. https://doi.org/10.1126/science.1228565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. van den Bedem H, Fraser JS (2015) Integrative, dynamic structural biology at atomic resolution - it’s about time. Nat Methods 12:307–318. https://doi.org/10.1038/nmeth.3324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32. https://doi.org/10.1016/j.tibs.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  87. Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods 2:261–268. https://doi.org/10.1038/nmeth752

    Article  CAS  PubMed  Google Scholar 

  88. Barysz H, Kim JH, Chen ZA et al (2015) Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 5:150005. https://doi.org/10.1098/rsob.150005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Beck M, Hurt E (2016) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2016.147

  90. Bui KH, von Appen A, DiGuilio AL et al (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155:1233–1243. https://doi.org/10.1016/j.cell.2013.10.055

    Article  CAS  PubMed  Google Scholar 

  91. Shi Y, Fernandez-Martinez J, Tjioe E et al (2014) Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol Cell Proteomics 13:2927–2943. https://doi.org/10.1074/mcp.M114.041673

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Oeffinger M (2012) Two steps forward-one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics 12:1591–1608. https://doi.org/10.1002/pmic.201100509

    Article  CAS  PubMed  Google Scholar 

  93. Morris JH, Knudsen GM, Verschueren E et al (2014) Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc 9:2539–2554. https://doi.org/10.1038/nprot.2014.164

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355. https://doi.org/10.1038/nature19949

    Article  CAS  PubMed  Google Scholar 

  95. Malovannaya A, Lanz RB, Jung SY et al (2011) Analysis of the human endogenous coregulator complexome. Cell 145:787–799. https://doi.org/10.1016/j.cell.2011.05.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Hein MY, Hubner NC, Poser I et al (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723. https://doi.org/10.1016/j.cell.2015.09.053

    Article  CAS  PubMed  Google Scholar 

  97. Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162:425–440. https://doi.org/10.1016/j.cell.2015.06.043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Wan C, Borgeson B, Phanse S et al (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525:339–344. https://doi.org/10.1038/nature14877

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032. https://doi.org/10.1038/13732

    Article  CAS  PubMed  Google Scholar 

  100. Hubner NC, Bird AW, Cox J et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189:739–754. https://doi.org/10.1083/jcb.200911091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3:981–983. https://doi.org/10.1038/nmeth972

    Article  CAS  PubMed  Google Scholar 

  102. Perkins JR, Diboun I, Dessailly BH et al (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233–1243. https://doi.org/10.1016/j.str.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  103. Keilhauer EC, Hein MY, Mann M (2015) Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics 14:120–135. https://doi.org/10.1074/mcp.M114.041012

    Article  CAS  PubMed  Google Scholar 

  104. Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386. https://doi.org/10.1074/mcp.M200025-MCP200

    Article  CAS  PubMed  Google Scholar 

  105. Ross PL (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169. https://doi.org/10.1074/mcp.M400129-MCP200

    Article  CAS  PubMed  Google Scholar 

  106. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999. https://doi.org/10.1038/13690

    Article  CAS  PubMed  Google Scholar 

  107. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904. https://doi.org/10.1021/ac0262560

    Article  CAS  PubMed  Google Scholar 

  108. Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201. https://doi.org/10.1021/ac0498563

    Article  CAS  PubMed  Google Scholar 

  109. Zybailov B, Coleman MK, Florens L, Washburn MP (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem 77:6218–6224. https://doi.org/10.1021/ac050846r

    Article  CAS  PubMed  Google Scholar 

  110. Lundgren DH, Hwang S-I, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53. https://doi.org/10.1586/epr.09.69

    Article  CAS  PubMed  Google Scholar 

  111. Nahnsen S, Bielow C, Reinert K, Kohlbacher O (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12:549–556. https://doi.org/10.1074/mcp.R112.025163

    Article  CAS  PubMed  Google Scholar 

  112. Fabre B, Lambour T, Bouyssié D et al (2014) Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteom 4:82–86. https://doi.org/10.1016/j.euprot.2014.06.001

    Article  CAS  Google Scholar 

  113. Cox J, Hein MY, Luber CA et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  115. Mertens HDT, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172:128–141. https://doi.org/10.1016/j.jsb.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Z, Vachet RW (2015) Kinetics of protein complex dissociation studied by hydrogen/deuterium exchange and mass spectrometry. Anal Chem 87:11777–11783. https://doi.org/10.1021/acs.analchem.5b03123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Bernecky C, Herzog F, Baumeister W et al (2016) Structure of transcribing mammalian RNA polymerase II. Nature 529:551–554. https://doi.org/10.1038/nature16482

    Article  CAS  PubMed  Google Scholar 

  118. Fernandez-Martinez J, Kim SJ, Shi Y et al (2016) Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167:1215–1228.e25. https://doi.org/10.1016/j.cell.2016.10.028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Tsai K-L, Yu X, Gopalan S et al (2017) Mediator structure and rearrangements required for holoenzyme formation. Nature 544:196–201. https://doi.org/10.1038/nature21393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cassiday L (2014) Structural biology: more than a crystallographer. Nature 505:711–713. https://doi.org/10.1038/nj7485-711a

    Article  CAS  PubMed  Google Scholar 

  121. Appolaire A, Girard E, Colombo M et al (2014) Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase. Acta Crystallogr D Biol Crystallogr 70:2983–2993. https://doi.org/10.1107/S1399004714018446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Macek P, Kerfah R, Erba EB et al (2017) Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2. Sci Adv 3:e1601601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  123. Mallik S, Kundu S (2017) Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways. Proteins 85:1183–1189. https://doi.org/10.1002/prot.25292

    Article  CAS  PubMed  Google Scholar 

  124. Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587. https://doi.org/10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  125. Ezkurdia I, Vázquez J, Valencia A, Tress M (2014) Analyzing the first drafts of the human proteome. J Proteome Res 13:3854–3855. https://doi.org/10.1021/pr500572z

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–168. https://doi.org/10.1016/j.tig.2016.12.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Chen S, Wu J, Lu Y et al (2016) Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci U S A 113:12991–12996. https://doi.org/10.1073/pnas.1614614113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

J.M. is supported by a Medical Research Council Career Development Award (MR/M02122X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan N. Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wells, J.N., Marsh, J.A. (2018). Experimental Characterization of Protein Complex Structure, Dynamics, and Assembly. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics