Fragment-Based Ligand Designing

  • Shashank P. Katiyar
  • Vidhi Malik
  • Anjani Kumari
  • Kamya Singh
  • Durai Sundar
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)


Fragment-based drug design strategies have been used in drug discovery since it was first demonstrated using experimental structural biology techniques such as nuclear magnetic resonance (NMR) and X-ray crystallography. The underlying idea is that existing or new chemical entities with known desirable properties may serve both as tool compounds and as starting points for hit-to-lead expansion. Despite the recent advancements, there remain challenges to overcome, such as assembly of the synthetically feasible structures, development of scoring functions to correlate structure and their activities, and fine tuning of the promising molecules. This chapter first covers the theoretical background needed to understand the concepts and the challenges related to the field of study, followed by the description of important protocols and related software. Case studies are presented to demonstrate practical applications.

Key words

3D QSAR De novo Fragment growing Fragment linking High-throughput screening Ligand-based drug design Structure-based drug design 


  1. 1.
    Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18(10):1105–1108CrossRefPubMedGoogle Scholar
  2. 2.
    Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim S-H, Schlessinger J, Zhang KYJ (2005) A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23(2):201–207CrossRefPubMedGoogle Scholar
  3. 3.
    Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48(2):403–413. CrossRefPubMedGoogle Scholar
  4. 4.
    Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J, Quadt C, Buckler A, Cozens R, Drysdale MJ, Garcia-Echeverria C, Chène P (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10(2):R33–R33. CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST (1995) De novo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem 38(3):466–472CrossRefPubMedGoogle Scholar
  6. 6.
    Stewart KD, Loren S, Frey L, Otis E, Klinghofer V, Hulkower KI (1998) Discovery of a new cyclooxygenase-2 lead compound through 3-D database searching and combinatorial chemistry. Bioorg Med Chem Lett 8(5):529–534CrossRefPubMedGoogle Scholar
  7. 7.
    Han Q, Dominguez C, Stouten PF, Park JM, Duffy DE, Galemmo RA Jr, Rossi KA, Alexander RS, Smallwood AM, Wong PC, Wright MM, Luettgen JM, Knabb RM, Wexler RR (2000) Design, synthesis, and biological evaluation of potent and selective amidino bicyclic factor Xa inhibitors. J Med Chem 43(23):4398–4415CrossRefPubMedGoogle Scholar
  8. 8.
    Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H (2001) Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. J Med Chem 44(26):4615–4627CrossRefPubMedGoogle Scholar
  9. 9.
    Grzybowski BA, Ishchenko AV, Kim CY, Topalov G, Chapman R, Christianson DW, Whitesides GM, Shakhnovich EI (2002) Combinatorial computational method gives new picomolar ligands for a known enzyme. Proc Natl Acad Sci U S A 99(3):1270–1273. CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Schneider G (2002) Trends in virtual combinatorial library design. Curr Med Chem 9:2095–2101CrossRefPubMedGoogle Scholar
  11. 11.
    Dobson CM (2004) Chemical space and biology. Nature 432:824–828CrossRefPubMedGoogle Scholar
  12. 12.
    Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861CrossRefPubMedGoogle Scholar
  13. 13.
    Richardson JS, Richardson DC (1989) The de novo design of protein structures. Trends Biochem Sci 14:304–309CrossRefPubMedGoogle Scholar
  14. 14.
    Richardson JS (1992) Looking at proteins: representations, folding, packing, and design. Biophys J 63:1185–1209CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Bohm HJ, Flohr A, Stahl M (2004) Scaffold hopping. Drug Discov Today Technol 1(3):217–224. CrossRefPubMedGoogle Scholar
  16. 16.
    Renner S, Schneider G (2006) Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 1(2):181–185. CrossRefPubMedGoogle Scholar
  17. 17.
    Mauser H, Guba W (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 11(3):365–374PubMedGoogle Scholar
  18. 18.
    Langdon SR, Ertl P, Brown N (2010) Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol Inform 29(5):366–385. CrossRefPubMedGoogle Scholar
  19. 19.
    Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10(1):14–32CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663CrossRefPubMedGoogle Scholar
  21. 21.
    Katiyar SP, Bakkiyaraj D, Karutha Pandian S (2011) Role of aromatic stack pairing at the catalytic site of gelonin protein. Biochem Biophys Res Commun 410(1):75–80. CrossRefPubMedGoogle Scholar
  22. 22.
    Shacham S, Marantz Y, Bar-Haim S, Kalid O, Warshaviak D, Avisar N, Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker OM (2004) PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57(1):51–86. CrossRefPubMedGoogle Scholar
  23. 23.
    Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9(15):659–669. CrossRefPubMedGoogle Scholar
  24. 24.
    Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP, Goyal S, Grover A, Sundar D (2015) Computational structure-based de novo design of hypothetical inhibitors against the anti-inflammatory target COX-2. PLoS One 10(8):e0134691. CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Fechner U, Schneider G (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46(2):699–707. CrossRefPubMedGoogle Scholar
  26. 26.
    Lloyd DG, Buenemann CL, Todorov NP, Manallack DT, Dean PM (2004) Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J Med Chem 47(3):493–496. CrossRefPubMedGoogle Scholar
  27. 27.
    Pasha FA, Muddassar M, Beg Y, Cho SJ (2008) DFT-based de novo QSAR of phenoloxidase inhibitors. Chem Biol Drug Des 71(5):483–493. CrossRefPubMedGoogle Scholar
  28. 28.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857CrossRefPubMedGoogle Scholar
  29. 29.
    Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11(1):29–34. CrossRefPubMedGoogle Scholar
  30. 30.
    Bohm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6(6):593–606CrossRefPubMedGoogle Scholar
  31. 31.
    Mills JE, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10(6):607–622CrossRefPubMedGoogle Scholar
  32. 32.
    Pearlman DA (1999) Free energy grids: a practical qualitative application of free energy perturbation to ligand design using the OWFEG method. J Med Chem 42(21):4313–4324CrossRefPubMedGoogle Scholar
  33. 33.
    Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. CrossRefPubMedGoogle Scholar
  34. 34.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar R, Sharma A, Varadwaj PK (2011) A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J Nat Sci Biol Med 2(2):168–173. CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Clark DE, Frenkel D, Levy SA, Li J, Murray CW, Robson B, Waszkowycz B, Westhead DR (1995) PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9(1):13–32CrossRefPubMedGoogle Scholar
  37. 37.
    Pellegrini E, Field MJ (2003) Development and testing of a de novo drug-design algorithm. J Comput Aided Mol Des 17(10):621–641CrossRefPubMedGoogle Scholar
  38. 38.
    Lewis RA (1990) Automated site-directed drug design: approaches to the formation of 3D molecular graphs. J Comput Aided Mol Des 4(2):205–210CrossRefPubMedGoogle Scholar
  39. 39.
    Nishibata Y, Itai A (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47(43):8985–8990. CrossRefGoogle Scholar
  40. 40.
    Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model 51(5):1083–1091. CrossRefPubMedGoogle Scholar
  41. 41.
    Schneider G, Lee ML, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14(5):487–494CrossRefPubMedGoogle Scholar
  42. 42.
    Globus A, Lawton J, Wipke T (1999) Automatic molecular design using evolutionary techniques. Nanotechnology 10(3):290–299CrossRefGoogle Scholar
  43. 43.
    Luo Z, Wang R, Lai L (1996) RASSE: a new method for structure-based drug design. J Chem Inf Comput Sci 36(6):1187–1194CrossRefPubMedGoogle Scholar
  44. 44.
    Nachbar RB (2000) Molecular evolution: automated manipulation of hierarchical chemical topology and its application to average molecular structures. Genet Program Evol Mach 1(1–2):57–94. CrossRefGoogle Scholar
  45. 45.
    Moore W Jr (2005) Maximizing discovery efficiency with a computationally driven fragment approach. Curr Opin Drug Discov Devel 8(3):355–364PubMedGoogle Scholar
  46. 46.
    Mohamadi F, Richards NG, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) MacroModel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467CrossRefGoogle Scholar
  47. 47.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106(3):765–784CrossRefGoogle Scholar
  48. 48.
    Ludington J, Fujimoto T, Hollinger F (2004) Determining partial atomic charges for fragments used in de novo drug design. Paper presented at the American Chemical Society, Washington, DCGoogle Scholar
  49. 49.
    Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical Monte Carlo simulation of ligand−protein binding. J Chem Inf Model 46(1):231–242CrossRefPubMedGoogle Scholar
  50. 50.
    Clark M, Meshkat S, Talbot GT, Carnevali P, Wiseman JS (2009) Fragment-based computation of binding free energies by systematic sampling. J Chem Inf Model 49(8):1901–1913CrossRefPubMedGoogle Scholar
  51. 51.
    Moffett K, Konteatis Z, Nguyen D, Shetty R, Ludington J, Fujimoto T, Lee K-J, Chai X, Namboodiri H, Karpusas M (2011) Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD). Bioorg Med Chem Lett 21(23):7155–7165CrossRefPubMedGoogle Scholar
  52. 52.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman MJR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Ciosloswki J, Stefanof BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (1998) Gaussian 98, revision a. 7. Gaussian. Inc, Pittsburgh, PAGoogle Scholar
  53. 53.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta 28(3):213–222CrossRefGoogle Scholar
  54. 54.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  55. 55.
    Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank. Eur J Biochem 80(2):319–324CrossRefPubMedGoogle Scholar
  56. 56.
    Wang R, Gao Y, Lai L (2000) LigBuilder: a multi-purpose program for structure-based drug design. Mol Model Annu 6(7–8):498–516CrossRefGoogle Scholar
  57. 57.
    de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13):630–646CrossRefPubMedGoogle Scholar
  58. 58.
    Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3(8):660–672CrossRefPubMedGoogle Scholar
  59. 59.
    Kumar A, Voet A, Zhang K (2012) Fragment based drug design: from experimental to computational approaches. Curr Med Chem 19(30):5128–5147CrossRefPubMedGoogle Scholar
  60. 60.
    Schrödinger L (2013) Small-molecule drug discovery suite 2013–3: QikProp, version 3.8. Schrödinger, LLC, New YorkGoogle Scholar
  61. 61.
    Schrödinger Release (2014) 1: Desmond molecular dynamics system, version 3.7. DE Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version 3Google Scholar
  62. 62.
    Schrödinger Release (2013) 1: Schrödinger Suite 2013 Protein Preparation Wizard. Epik version 2:2013Google Scholar
  63. 63.
    Schrödinger L (2013) Small-molecule drug discovery suite 2013–3: Glide, version 6.1. Schrödinger, LLC, New YorkGoogle Scholar
  64. 64.
    Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, Graham AG, Grob PM, Hickey ER, Moss N, Pav S (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Mol Biol 9(4):268–272CrossRefGoogle Scholar
  65. 65.
    Guarnieri F (2015) Designing a small molecule erythropoietin mimetic. Methods Mol Biol 1289:185–210CrossRefPubMedGoogle Scholar
  66. 66.
    Cohen SB, Cheng TT, Chindalore V, Damjanov N, Burgos-Vargas R, DeLora P, Zimany K, Travers H, Caulfield JP (2009) Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheumatol 60(2):335–344CrossRefGoogle Scholar
  67. 67.
    Kandil S, Biondaro S, Vlachakis D, Cummins A-C, Coluccia A, Berry C, Leyssen P, Neyts J, Brancale A (2009) Discovery of a novel HCV helicase inhibitor by a de novo drug design approach. Bioorg Med Chem Lett 19(11):2935–2937CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shashank P. Katiyar
    • 1
  • Vidhi Malik
    • 1
  • Anjani Kumari
    • 1
  • Kamya Singh
    • 1
  • Durai Sundar
    • 1
  1. 1.Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB)Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations