Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein–Ligand Docking Method

  • Woong-Hee Shin
  • Daisuke Kihara
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)


Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.

Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

Key words

Drug discovery Molecular surface Protein–ligand interaction Three-dimensional Zernike descriptor Virtual screening 3DZD 



We acknowledge Dan K. Ntala for proofreading the manuscript. This work was partly supported by grants from the National Science Foundation (IIS1319551). D.K. also acknowledges supports from National Institutes of Health (R01GM097528, R01GM123055) and the National Science Foundation (IOS1127027, DMS1614777).


  1. 1.
    Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178CrossRefGoogle Scholar
  2. 2.
    Schwartz J, Awale M, Reymond JL (2013) SMIfp (SMILES fingerprint) chemical space for virtual screening and visualization of large databases of organic molecules. J Chem Info Model 53(8):1979–1989CrossRefGoogle Scholar
  3. 3.
    Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280CrossRefPubMedGoogle Scholar
  4. 4.
    Raymond JW, Gardiner EJ, Willett P (2002) RASCAL: calculation of graph similarity using maximum common edge subgraphs. Comput J 45(6):631–644CrossRefGoogle Scholar
  5. 5.
    Bender A, Mussa HY, Glen RC (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44(5):1708–1718CrossRefPubMedGoogle Scholar
  6. 6.
    Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723CrossRefPubMedGoogle Scholar
  7. 7.
    Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82CrossRefPubMedGoogle Scholar
  8. 8.
    Jain AN (2007) Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput-Aided Mol Des 21(5):281–306CrossRefPubMedGoogle Scholar
  9. 9.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  10. 10.
    Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakus DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36(15):1132–1156CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53(2):539–558CrossRefPubMedGoogle Scholar
  12. 12.
    Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Info Model 45(1):160–169CrossRefGoogle Scholar
  13. 13.
    Shin WH, Christoffer CW, Wang J, Kihara D (2016) PL-PatchSurfer2: improved local surface matching-based virtual screening method that is tolerant to target and ligand structure variation. J Chem Info Model 56(9):1676–1691CrossRefGoogle Scholar
  14. 14.
    Novotni M, Klein R (2003) 3D Zernike descriptors for content based shape retrieval. In: Proceedings of eighth ACM symposium on solid modeling and applications, Washington, pp 216–225Google Scholar
  15. 15.
    Shin WH, Zhu X, Bures MG, Kihara D (2015) Three-dimensional compound comparison methods and their application in drug discovery. Molecules 20(7):12841–12962CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhu X, Xiong Y, Kihara D (2015) Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0. Bioinformatics 31(5):707–713CrossRefPubMedGoogle Scholar
  17. 17.
    Esquivel-Rodriguez J, Xiong Y, Han X, Gang S, Christoffer CW, Kihara D (2015) Navigating 3D electron microscopy maps with EM-SURFER. BMC Bioinf 16:181CrossRefGoogle Scholar
  18. 18.
    Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinf 10:407CrossRefGoogle Scholar
  19. 19.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge Structural Database. J Chem Info Model 50(4):572–584CrossRefGoogle Scholar
  21. 21.
    Sael L, Kihara D (2012) Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison. Proteins 80(4):1177–1185CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R (2007) Computation of octanol−water partition coefficients by guiding an additive model with knowledge. J Chem Info Model 47(6):2140–2148CrossRefGoogle Scholar
  23. 23.
    Heiden W, Moeckel G, Brickmann J (1993) A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput-Aided Mol Des 7(5):503–514CrossRefPubMedGoogle Scholar
  24. 24.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersh T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33CrossRefGoogle Scholar
  25. 25.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefPubMedGoogle Scholar
  26. 26.
    Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71(2):670–683CrossRefPubMedGoogle Scholar
  27. 27.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman E (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(D1):D1083–D1090CrossRefPubMedGoogle Scholar
  29. 29.
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213CrossRefPubMedGoogle Scholar
  30. 30.
    Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249CrossRefPubMedGoogle Scholar
  31. 31.
    Volgt JH, Blenfalt B, Wang S, Nicklaus MC (2001) Comparison of the NCI open database with seven large chemical structural databases. J Chem Inf Comput Sci 41(3):702–712CrossRefGoogle Scholar
  32. 32.
    Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14(7):667–678CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dehm SM, Bonham K (2004) SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 82(2):263–274CrossRefPubMedGoogle Scholar
  34. 34.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencePurdue UniversityWest LafayetteUSA
  2. 2.Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations