Skip to main content

Molecular Dynamics Simulation and Prediction of Druggable Binding Sites

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Binding site identification and druggability evaluation are two essential steps in structure-based drug design. A druggable binding site tends to have high binding affinity to drug-like molecules. Predicting such sites can have a significant impact on a drug design campaign. This chapter focuses on summarizing the different methods that are used to predict druggable binding sites. The chapter also discusses the importance of including protein flexibility in the search process and the use of molecular dynamics simulations to address this aspect. Case studies from the literature are also summarized and discussed. We hope that this chapter would provide an overview on the different methods employed in binding site identification evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nisius B, Sha F, Gohlke H (2012) Structure-based computational analysis of protein binding sites for function and druggability prediction. J Biotechnol 159(3):123–134

    Article  CAS  PubMed  Google Scholar 

  2. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  PubMed  Google Scholar 

  3. Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10(23–24):1675–1682

    Article  CAS  PubMed  Google Scholar 

  4. Barakat KH, Mane JY, Tuszynski JA (2011) Virtual screening: an overview on methods and applications, in handbook of research on computational and systems biology. In: Liu L, Wei D, Li Y, Lei H (eds) Handbook of research on computational and systems biology. IGI Global, New York, pp 28–60

    Chapter  Google Scholar 

  5. Ahmed M, Wang F, Levin A et al (2015) Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA. Drug Discov Today 20(5):548–561

    Article  CAS  PubMed  Google Scholar 

  6. Barakat K (2014) Computer-aided drug design. J Pharma Care Health Sys 1(4):1000e113

    Google Scholar 

  7. Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8(7):2435–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown SP, Hajduk PJ (2006) Effects of conformational dynamics on predicted protein druggability. ChemMedChem 1(1):70–72

    Article  CAS  PubMed  Google Scholar 

  9. Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52(8):2363–2371

    Article  CAS  PubMed  Google Scholar 

  10. Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219

    CAS  PubMed  Google Scholar 

  11. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389

    Article  CAS  PubMed  Google Scholar 

  12. Barakat KH, Law J, Prunotto A et al (2013) Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design. J Chem Inf Model 53(11):3031–3043

    Article  CAS  PubMed  Google Scholar 

  13. Viricel CM, Ahmed M, Barakat K (2015) Human PD-1 binds differently to its human ligands: a comprehensive modeling study. J Mol Graph Model 57C:131–142

    Article  Google Scholar 

  14. Ahmed M, Barakat K (2015) Baby steps toward modelling the full human programmed Death-1 (PD-1) pathway. Receptors Clin Investig 2(3)

    Google Scholar 

  15. Barakat KH, Huzil JT, Jordan KE, Evangelinos C, Houghton M, Tuszynski J (2013) A computational model for overcoming drug resistance using selective dual-inhibitors for aurora kinase A and its T217D variant. Mol Pharm 10(12):4572–4589

    Article  CAS  PubMed  Google Scholar 

  16. Gajewski MM, Tuszynski J, Barakat K, Huzil JT, Klobukowski M (2013) Interactions of laulimalide, peloruside, and their derivatives with the isoforms of β-tubulin. Can J Chem 91(7):511–517

    Article  CAS  Google Scholar 

  17. Gentile F, Tuszynski JA, Barakat KH (2016) New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J Mol Graph Model 65:71–82

    Article  CAS  PubMed  Google Scholar 

  18. Hu G, Wang K, Groenendyk J (2014) Human structural proteome-wide characterization of cyclosporine a targets. Bioinformatics 30(24):3561–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5(9):2486–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein-protein interaction. J Med Chem 50(15):3457–3464

    Article  CAS  PubMed  Google Scholar 

  21. Oleinikovas V, Saladino G, Cossins BP, Gervasio FL (2016) Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc 138(43):14257–14263

    Article  CAS  PubMed  Google Scholar 

  22. Ganesan A, Coote ML, Barakat K (2017) Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 22(2):249–269

    Article  CAS  PubMed  Google Scholar 

  23. Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667

    Article  CAS  PubMed  Google Scholar 

  24. Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14(4):383–401

    Article  CAS  PubMed  Google Scholar 

  25. Levitt DG, Banaszak LJ (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10(4):229–234

    Article  CAS  PubMed  Google Scholar 

  26. Hendlich MF, Rippmann BG (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363. 389

    Article  CAS  PubMed  Google Scholar 

  27. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857

    Article  CAS  PubMed  Google Scholar 

  28. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  29. Villoutreix BO, Kuenemann MA, Poyet JL (2004) Drug-like protein-protein interaction modulators: challenges and opportunities for drug discovery and chemical biology. Mol Inform 33(6–7):414–437

    Google Scholar 

  30. Bourgeas R, Basse MJ, Morelli X, Roche P (2010) Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 5(3):e9598

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ivetac A, McCammon JA (2010) Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem Biol Drug Des 76(3):201–217

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Landon MR, Lancia DR, Yu J, Thiel SC, Vajda S (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50(6):1231–1240

    Article  CAS  PubMed  Google Scholar 

  33. Miao Y, Nichols SE, McCammon JA (2014) Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des 83(2):237–246

    Article  CAS  PubMed  Google Scholar 

  34. Kozakov D, Grove LE, Hall DR et al (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10(5):733–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  PubMed  Google Scholar 

  36. Makley LN, Gestwicki JE (2013) Expanding the number of 'druggable' targets: non-enzymes and protein-protein interactions. Chem Biol Drug Des 81(1):22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fauman EB, Rai BK, Huang ES (2011) Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15(4):463–468

    Article  CAS  PubMed  Google Scholar 

  38. Craig IR, Pfleger C, Gohlke H, Essex JW, Spiegel K (2011) Pocket-space maps to identify novel binding-site conformations in proteins. J Chem Inf Model 51(10):2666–2679

    Article  CAS  PubMed  Google Scholar 

  39. Yang CY, Wang S (2011) Hydrophobic binding hot spots of Bcl-xL protein-protein interfaces by Cosolvent molecular dynamics simulation. ACS Med Chem Lett 2(4):280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon A (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47(8):1879–1881

    Article  CAS  PubMed  Google Scholar 

  41. Durrant JD, Keranen H, Wilson BA, McCammon JA (2010) Computational identification of uncharacterized cruzain binding sites. PLoS Negl Trop Dis 4(5):e676

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grant BJ, Lukman S, Hocker HJ et al (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6(10):e25711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidtke P, Bidon Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285

    Article  CAS  PubMed  Google Scholar 

  44. Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D (2013) FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics 29(9):1218–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061

    Article  PubMed  Google Scholar 

  46. Lukman S, Nguyen MN, Sim K, Teo JC (2017) Discovery of Rab1 binding sites using an ensemble of clustering methods. Proteins 85(5):859–871

    Article  CAS  PubMed  Google Scholar 

  47. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791

    Article  CAS  PubMed  Google Scholar 

  48. Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430

    Article  CAS  PubMed  Google Scholar 

  49. Ortiz-Sanchez JM, Nichols SE, Sayyah J, Brown JH, McCammon JA, Grant BJ (2012) Identification of potential small molecule binding pockets on rho family GTPases. PLoS One 7(7):e40809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugita Y, Okamoto Y (2000) Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem Phys Lett 329(3–4):261–270

    Article  CAS  Google Scholar 

  51. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908–3911

    Article  CAS  Google Scholar 

  52. Kerrigan JE (2013) Molecular dynamics simulations in drug design. Methods Mol Biol 993:95–113

    Article  CAS  PubMed  Google Scholar 

  53. Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today 20(6):686–702

    Article  CAS  PubMed  Google Scholar 

  54. Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Kasam V, Tautermann CS, Seeliger D, Vaidehi N (2014) Computational method to identify druggable binding sites that target protein-protein interactions. J Chem Inf Model 54(5):1391–1400

    Article  CAS  PubMed  Google Scholar 

  56. Alvarez-Garcia D, Barril X (2014) Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J Med Chem 57(20):8530–8539

    Article  CAS  PubMed  Google Scholar 

  57. Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5(7):e1000435

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J Am Chem Soc 133(2):200–202

    Article  CAS  PubMed  Google Scholar 

  59. Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr (2013) Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 53(12):3384–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beuming T, Che Y, Abel R, Kim B, Shanmugasundaram V, Sherman W (2012) Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins 80(3):871–883

    Article  CAS  PubMed  Google Scholar 

  61. Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46(26):5628–5637

    Article  CAS  PubMed  Google Scholar 

  62. Landon MR, Amaro RE, Baron R et al (2008) Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71(2):106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shu M, Lin Z, Zhang Y, Wu Y, Mei H, Jiang Y (2011) Molecular dynamics simulation of oseltamivir resistance in neuraminidase of avian influenza H5N1 virus. J Mol Model 17(3):587–592

    Article  CAS  PubMed  Google Scholar 

  64. Dror RO, Pan AC, Arlow DH et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Overington JP, Al-Lazikani B, Hopkins AL (2006) Opinion - how many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  66. Kappel K, Miao Y, McCammon JA (2015) Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Q Rev Biophys 48(4):479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cimermancic P, Weinkam P, Rettenmaier TJ (2016) CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J Mol Biol 428(4):709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2–3):83–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Barakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feng, T., Barakat, K. (2018). Molecular Dynamics Simulation and Prediction of Druggable Binding Sites. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics