Molecular Dynamics Simulation and Prediction of Druggable Binding Sites

  • Tianhua Feng
  • Khaled Barakat
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)


Binding site identification and druggability evaluation are two essential steps in structure-based drug design. A druggable binding site tends to have high binding affinity to drug-like molecules. Predicting such sites can have a significant impact on a drug design campaign. This chapter focuses on summarizing the different methods that are used to predict druggable binding sites. The chapter also discusses the importance of including protein flexibility in the search process and the use of molecular dynamics simulations to address this aspect. Case studies from the literature are also summarized and discussed. We hope that this chapter would provide an overview on the different methods employed in binding site identification evaluation.

Key words

Conformational ensemble Cosolvent molecular dynamic simulation Druggability Hot spot Protein flexibility 


  1. 1.
    Nisius B, Sha F, Gohlke H (2012) Structure-based computational analysis of protein binding sites for function and druggability prediction. J Biotechnol 159(3):123–134PubMedCrossRefGoogle Scholar
  2. 2.
    Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009PubMedCrossRefGoogle Scholar
  3. 3.
    Hajduk PJ, Huth JR, Tse C (2005) Predicting protein druggability. Drug Discov Today 10(23–24):1675–1682PubMedCrossRefGoogle Scholar
  4. 4.
    Barakat KH, Mane JY, Tuszynski JA (2011) Virtual screening: an overview on methods and applications, in handbook of research on computational and systems biology. In: Liu L, Wei D, Li Y, Lei H (eds) Handbook of research on computational and systems biology. IGI Global, New York, pp 28–60CrossRefGoogle Scholar
  5. 5.
    Ahmed M, Wang F, Levin A et al (2015) Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA. Drug Discov Today 20(5):548–561PubMedCrossRefGoogle Scholar
  6. 6.
    Barakat K (2014) Computer-aided drug design. J Pharma Care Health Sys 1(4):1000e113Google Scholar
  7. 7.
    Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8(7):2435–2447PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Brown SP, Hajduk PJ (2006) Effects of conformational dynamics on predicted protein druggability. ChemMedChem 1(1):70–72PubMedCrossRefGoogle Scholar
  9. 9.
    Seco J, Luque FJ, Barril X (2009) Binding site detection and druggability index from first principles. J Med Chem 52(8):2363–2371PubMedCrossRefGoogle Scholar
  10. 10.
    Henrich S, Salo-Ahen OM, Huang B, Rippmann FF, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219PubMedGoogle Scholar
  11. 11.
    Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389PubMedCrossRefGoogle Scholar
  12. 12.
    Barakat KH, Law J, Prunotto A et al (2013) Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design. J Chem Inf Model 53(11):3031–3043PubMedCrossRefGoogle Scholar
  13. 13.
    Viricel CM, Ahmed M, Barakat K (2015) Human PD-1 binds differently to its human ligands: a comprehensive modeling study. J Mol Graph Model 57C:131–142CrossRefGoogle Scholar
  14. 14.
    Ahmed M, Barakat K (2015) Baby steps toward modelling the full human programmed Death-1 (PD-1) pathway. Receptors Clin Investig 2(3)Google Scholar
  15. 15.
    Barakat KH, Huzil JT, Jordan KE, Evangelinos C, Houghton M, Tuszynski J (2013) A computational model for overcoming drug resistance using selective dual-inhibitors for aurora kinase A and its T217D variant. Mol Pharm 10(12):4572–4589PubMedCrossRefGoogle Scholar
  16. 16.
    Gajewski MM, Tuszynski J, Barakat K, Huzil JT, Klobukowski M (2013) Interactions of laulimalide, peloruside, and their derivatives with the isoforms of β-tubulin. Can J Chem 91(7):511–517CrossRefGoogle Scholar
  17. 17.
    Gentile F, Tuszynski JA, Barakat KH (2016) New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J Mol Graph Model 65:71–82PubMedCrossRefGoogle Scholar
  18. 18.
    Hu G, Wang K, Groenendyk J (2014) Human structural proteome-wide characterization of cyclosporine a targets. Bioinformatics 30(24):3561–3566PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5(9):2486–2502PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein-protein interaction. J Med Chem 50(15):3457–3464PubMedCrossRefGoogle Scholar
  21. 21.
    Oleinikovas V, Saladino G, Cossins BP, Gervasio FL (2016) Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc 138(43):14257–14263PubMedCrossRefGoogle Scholar
  22. 22.
    Ganesan A, Coote ML, Barakat K (2017) Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 22(2):249–269PubMedCrossRefGoogle Scholar
  23. 23.
    Perot S, Sperandio O, Miteva MA, Camproux AC, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667PubMedCrossRefGoogle Scholar
  24. 24.
    Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14(4):383–401PubMedCrossRefGoogle Scholar
  25. 25.
    Levitt DG, Banaszak LJ (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10(4):229–234PubMedCrossRefGoogle Scholar
  26. 26.
    Hendlich MF, Rippmann BG (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363. 389PubMedCrossRefGoogle Scholar
  27. 27.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857PubMedCrossRefGoogle Scholar
  28. 28.
    Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916PubMedCrossRefGoogle Scholar
  29. 29.
    Villoutreix BO, Kuenemann MA, Poyet JL (2004) Drug-like protein-protein interaction modulators: challenges and opportunities for drug discovery and chemical biology. Mol Inform 33(6–7):414–437Google Scholar
  30. 30.
    Bourgeas R, Basse MJ, Morelli X, Roche P (2010) Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database. PLoS One 5(3):e9598PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ivetac A, McCammon JA (2010) Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem Biol Drug Des 76(3):201–217PubMedPubMedCentralGoogle Scholar
  32. 32.
    Landon MR, Lancia DR, Yu J, Thiel SC, Vajda S (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50(6):1231–1240PubMedCrossRefGoogle Scholar
  33. 33.
    Miao Y, Nichols SE, McCammon JA (2014) Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem Biol Drug Des 83(2):237–246PubMedCrossRefGoogle Scholar
  34. 34.
    Kozakov D, Grove LE, Hall DR et al (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10(5):733–755PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75PubMedCrossRefGoogle Scholar
  36. 36.
    Makley LN, Gestwicki JE (2013) Expanding the number of 'druggable' targets: non-enzymes and protein-protein interactions. Chem Biol Drug Des 81(1):22–32PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fauman EB, Rai BK, Huang ES (2011) Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15(4):463–468PubMedCrossRefGoogle Scholar
  38. 38.
    Craig IR, Pfleger C, Gohlke H, Essex JW, Spiegel K (2011) Pocket-space maps to identify novel binding-site conformations in proteins. J Chem Inf Model 51(10):2666–2679PubMedCrossRefGoogle Scholar
  39. 39.
    Yang CY, Wang S (2011) Hydrophobic binding hot spots of Bcl-xL protein-protein interfaces by Cosolvent molecular dynamics simulation. ACS Med Chem Lett 2(4):280–284PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon A (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47(8):1879–1881PubMedCrossRefGoogle Scholar
  41. 41.
    Durrant JD, Keranen H, Wilson BA, McCammon JA (2010) Computational identification of uncharacterized cruzain binding sites. PLoS Negl Trop Dis 4(5):e676PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Grant BJ, Lukman S, Hocker HJ et al (2011) Novel allosteric sites on Ras for lead generation. PLoS One 6(10):e25711PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schmidtke P, Bidon Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285PubMedCrossRefGoogle Scholar
  44. 44.
    Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D (2013) FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics 29(9):1218–1219PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061PubMedCrossRefGoogle Scholar
  46. 46.
    Lukman S, Nguyen MN, Sim K, Teo JC (2017) Discovery of Rab1 binding sites using an ensemble of clustering methods. Proteins 85(5):859–871PubMedCrossRefGoogle Scholar
  47. 47.
    Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791PubMedCrossRefGoogle Scholar
  48. 48.
    Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430PubMedCrossRefGoogle Scholar
  49. 49.
    Ortiz-Sanchez JM, Nichols SE, Sayyah J, Brown JH, McCammon JA, Grant BJ (2012) Identification of potential small molecule binding pockets on rho family GTPases. PLoS One 7(7):e40809PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sugita Y, Okamoto Y (2000) Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem Phys Lett 329(3–4):261–270CrossRefGoogle Scholar
  51. 51.
    Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908–3911CrossRefGoogle Scholar
  52. 52.
    Kerrigan JE (2013) Molecular dynamics simulations in drug design. Methods Mol Biol 993:95–113PubMedCrossRefGoogle Scholar
  53. 53.
    Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes. Drug Discov Today 20(6):686–702PubMedCrossRefGoogle Scholar
  54. 54.
    Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14PubMedCrossRefGoogle Scholar
  55. 55.
    Li H, Kasam V, Tautermann CS, Seeliger D, Vaidehi N (2014) Computational method to identify druggable binding sites that target protein-protein interactions. J Chem Inf Model 54(5):1391–1400PubMedCrossRefGoogle Scholar
  56. 56.
    Alvarez-Garcia D, Barril X (2014) Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J Med Chem 57(20):8530–8539PubMedCrossRefGoogle Scholar
  57. 57.
    Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5(7):e1000435PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lexa KW, Carlson HA (2011) Full protein flexibility is essential for proper hot-spot mapping. J Am Chem Soc 133(2):200–202PubMedCrossRefGoogle Scholar
  59. 59.
    Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr (2013) Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 53(12):3384–3398PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beuming T, Che Y, Abel R, Kim B, Shanmugasundaram V, Sherman W (2012) Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins 80(3):871–883PubMedCrossRefGoogle Scholar
  61. 61.
    Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46(26):5628–5637PubMedCrossRefGoogle Scholar
  62. 62.
    Landon MR, Amaro RE, Baron R et al (2008) Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71(2):106–116PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shu M, Lin Z, Zhang Y, Wu Y, Mei H, Jiang Y (2011) Molecular dynamics simulation of oseltamivir resistance in neuraminidase of avian influenza H5N1 virus. J Mol Model 17(3):587–592PubMedCrossRefGoogle Scholar
  64. 64.
    Dror RO, Pan AC, Arlow DH et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) Opinion - how many drug targets are there? Nat Rev Drug Discov 5(12):993–996PubMedCrossRefGoogle Scholar
  66. 66.
    Kappel K, Miao Y, McCammon JA (2015) Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Q Rev Biophys 48(4):479–487PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cimermancic P, Weinkam P, Rettenmaier TJ (2016) CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J Mol Biol 428(4):709–719PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2–3):83–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations