Advertisement

Building Molecular Interaction Networks from Microarray Data for Drug Target Screening

  • Sze Chung Yuen
  • Hongmei Zhu
  • Siu-wai Leung
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1762)

Abstract

Potential drug targets for the disease treatment can be identified from microarray studies on differential gene expression of patients and healthy participants. Here, we describe a method to use the information of differentially expressed (DE) genes obtained from microarray studies to build molecular interaction networks for identification of pivotal molecules as potential drug targets. The quality control and normalization of the microarray data are conducted with R packages simpleaffy and affy, respectively. The DE genes with adjusted P values less than 0.05 and log fold changes larger than 1 or less than −1 are identified by limma package to construct a molecular interaction network with InnateDB. The genes with significant connectivity are identified by the Cytoscape app jActiveModules. The interactions among the genes within a module are tested by psych package to determine their associations. The gene pairs with significant association and known protein structures according to the Protein Data Bank are selected as potential drug targets. As an example for drug target screening, we demonstrate how to identify potential drug targets from a molecular interaction network constructed with the DE genes of significant connectivity, using a microarray dataset of type 2 diabetes mellitus.

Key words

Differentially expressed genes Drug targets Microarray Type 2 diabetes mellitus 

References

  1. 1.
    Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefPubMedGoogle Scholar
  2. 2.
    Bumgarner R (2013) DNA microarrays: types, applications and their future. Curr Protoc Mol Biol 6137:1–17Google Scholar
  3. 3.
    Affymetrix (2007) Data sheet: genechip human genome U133 arrays. Proc Natl Acad Sci U S A 2007:1–8Google Scholar
  4. 4.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062 CrossRefPubMedGoogle Scholar
  5. 5.
    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040 CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Y, Miao ZH, Pommier Y et al (2007) Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips. Bioinformatics 23:2088–2095. https://doi.org/10.1093/bioinformatics/btm306 CrossRefPubMedGoogle Scholar
  7. 7.
    Palacios G, Quan P, Jabado OJ et al (2007) Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13:73–81. https://doi.org/10.3201/eid1301.060837 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cowell JK, Hawthorn L (2007) The application of microarray technology to the analysis of the cancer genome. Curr Mol Med 7:103–120. https://doi.org/10.2174/156652407779940387 CrossRefPubMedGoogle Scholar
  9. 9.
    Smyth G (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–26. https://doi.org/10.2202/1544-6115.1027 CrossRefGoogle Scholar
  10. 10.
    Watts DJ, Strogatz SH (1998) Collective dynamics of’small-world’ networks. Nature 393:440–442. https://doi.org/10.1038/30918 CrossRefPubMedGoogle Scholar
  11. 11.
    Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402:C47–C52. https://doi.org/10.1038/35011540 CrossRefPubMedGoogle Scholar
  12. 12.
    Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918.Network CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    IDF diabetes atlas–Home. http://www.diabetesatlas.org/
  14. 14.
    Beckman JA, Paneni F, Cosentino F et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34:2444–2456. https://doi.org/10.1093/eurheartj/eht142 CrossRefPubMedGoogle Scholar
  15. 15.
    Creager MA, Lüscher TF, Cosentino F et al (2003) Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532. https://doi.org/10.1161/01.CIR.0000091257.27563.32 CrossRefPubMedGoogle Scholar
  16. 16.
    Jung CH, Baek AR, Kim KJ et al (2013) Association between cardiac autonomic neuropathy, diabetic retinopathy and carotid atherosclerosis in patients with type 2 diabetes. Endocrinol Metab (Seoul) 28:309–319. https://doi.org/10.3803/EnM.2013.28.4.309 CrossRefGoogle Scholar
  17. 17.
    Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204:1–11. https://doi.org/10.1677/JOE-09-0260 CrossRefPubMedGoogle Scholar
  18. 18.
    Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53. https://doi.org/10.2174/157339913804143225 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Majithia AR, Florez JC (2009) Clinical translation of genetic predictors for type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 16:100–106. https://doi.org/10.1097/MED.0b013e3283292354 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621. https://doi.org/10.1016/j.tig.2008.09.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Ridderstråle M, Groop L (2009) Genetic dissection of type 2 diabetes. Mol Cell Endocrinol 297:10–17. https://doi.org/10.1016/j.mce.2008.10.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Stančáková A, Laakso M (2016) Genetics of type 2 diabetes. Endocr Dev 31:203–220. https://doi.org/10.1159/000439418 CrossRefPubMedGoogle Scholar
  23. 23.
    Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic?? Cells. J Biol Chem 286:4216–4225. https://doi.org/10.1074/jbc.M110.200295 CrossRefPubMedGoogle Scholar
  24. 24.
    Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371. https://doi.org/10.1038/ng1201-365 CrossRefPubMedGoogle Scholar
  25. 25.
    Yeung N, Cline MS, Kuchinsky A et al (2008) Exploring biological networks with Cytoscape software. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi0813s23
  26. 26.
    Gautier L, Cope L, Bolstad BM et al (2004) Affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. https://doi.org/10.1093/bioinformatics/btg405 CrossRefPubMedGoogle Scholar
  27. 27.
    Neuwirth E. (2014) RColorBrewer: ColorBrewer palettes. R Packag version 11–2: https://cran.R--project.org/package=RColorBrewer. https://cran.r-project.org/web/packages/RColorBrewer/index.html
  28. 28.
    Wilson CL, Miller CJ (2005) Simpleaffy: a bioconductor package for Affymetrix quality control and data analysis. Bioinformatics 21:3683–3685. https://doi.org/10.1093/bioinformatics/bti605 CrossRefPubMedGoogle Scholar
  29. 29.
    Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carlson M (2016) hgu133a.db: Affymetrix Human Genome U133 Set annotation data (chip hgu133a)Google Scholar
  31. 31.
    Revelle W (2017) Psych: procedures for personality and psychological research. Northwestern University, Evanston, Illinois, USA. https://CRAN.R-project.org/package=psych Version = 1.7.5Google Scholar
  32. 32.
    Gautier L, Irizarry R, Cope L (2009) Description of affy. Changes 2009:1–29Google Scholar
  33. 33.
    Breuer K, Foroushani AK, Laird MR (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:1228–1233. https://doi.org/10.1093/nar/gks1147 CrossRefGoogle Scholar
  34. 34.
    Lynn DJ, Winsor GL, Chan C (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218. https://doi.org/10.1038/msb.2008.55 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Orchard S, Salwinski L, Kerrien S (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25:894–898. https://doi.org/10.1038/nbt1324 CrossRefPubMedGoogle Scholar
  36. 36.
    Cline MS, Smoot M, Cerami E (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382. https://doi.org/10.1038/nprot.2007.324 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sze Chung Yuen
    • 1
  • Hongmei Zhu
    • 1
  • Siu-wai Leung
    • 1
    • 2
  1. 1.State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacaoChina
  2. 2.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations