Skip to main content

Building Molecular Interaction Networks from Microarray Data for Drug Target Screening

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Potential drug targets for the disease treatment can be identified from microarray studies on differential gene expression of patients and healthy participants. Here, we describe a method to use the information of differentially expressed (DE) genes obtained from microarray studies to build molecular interaction networks for identification of pivotal molecules as potential drug targets. The quality control and normalization of the microarray data are conducted with R packages simpleaffy and affy, respectively. The DE genes with adjusted P values less than 0.05 and log fold changes larger than 1 or less than −1 are identified by limma package to construct a molecular interaction network with InnateDB. The genes with significant connectivity are identified by the Cytoscape app jActiveModules. The interactions among the genes within a module are tested by psych package to determine their associations. The gene pairs with significant association and known protein structures according to the Protein Data Bank are selected as potential drug targets. As an example for drug target screening, we demonstrate how to identify potential drug targets from a molecular interaction network constructed with the DE genes of significant connectivity, using a microarray dataset of type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  2. Bumgarner R (2013) DNA microarrays: types, applications and their future. Curr Protoc Mol Biol 6137:1–17

    Google Scholar 

  3. Affymetrix (2007) Data sheet: genechip human genome U133 arrays. Proc Natl Acad Sci U S A 2007:1–8

    Google Scholar 

  4. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  5. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Miao ZH, Pommier Y et al (2007) Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips. Bioinformatics 23:2088–2095. https://doi.org/10.1093/bioinformatics/btm306

    Article  CAS  PubMed  Google Scholar 

  7. Palacios G, Quan P, Jabado OJ et al (2007) Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13:73–81. https://doi.org/10.3201/eid1301.060837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cowell JK, Hawthorn L (2007) The application of microarray technology to the analysis of the cancer genome. Curr Mol Med 7:103–120. https://doi.org/10.2174/156652407779940387

    Article  CAS  PubMed  Google Scholar 

  9. Smyth G (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–26. https://doi.org/10.2202/1544-6115.1027

    Article  Google Scholar 

  10. Watts DJ, Strogatz SH (1998) Collective dynamics of’small-world’ networks. Nature 393:440–442. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  11. Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402:C47–C52. https://doi.org/10.1038/35011540

    Article  CAS  PubMed  Google Scholar 

  12. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918.Network

    Article  PubMed  PubMed Central  Google Scholar 

  13. IDF diabetes atlas–Home. http://www.diabetesatlas.org/

  14. Beckman JA, Paneni F, Cosentino F et al (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34:2444–2456. https://doi.org/10.1093/eurheartj/eht142

    Article  PubMed  Google Scholar 

  15. Creager MA, Lüscher TF, Cosentino F et al (2003) Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108:1527–1532. https://doi.org/10.1161/01.CIR.0000091257.27563.32

    Article  PubMed  Google Scholar 

  16. Jung CH, Baek AR, Kim KJ et al (2013) Association between cardiac autonomic neuropathy, diabetic retinopathy and carotid atherosclerosis in patients with type 2 diabetes. Endocrinol Metab (Seoul) 28:309–319. https://doi.org/10.3803/EnM.2013.28.4.309

    Article  Google Scholar 

  17. Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204:1–11. https://doi.org/10.1677/JOE-09-0260

    Article  CAS  PubMed  Google Scholar 

  18. Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53. https://doi.org/10.2174/157339913804143225

    Article  PubMed  PubMed Central  Google Scholar 

  19. Majithia AR, Florez JC (2009) Clinical translation of genetic predictors for type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 16:100–106. https://doi.org/10.1097/MED.0b013e3283292354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621. https://doi.org/10.1016/j.tig.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  21. Ridderstråle M, Groop L (2009) Genetic dissection of type 2 diabetes. Mol Cell Endocrinol 297:10–17. https://doi.org/10.1016/j.mce.2008.10.002

    Article  PubMed  Google Scholar 

  22. Stančáková A, Laakso M (2016) Genetics of type 2 diabetes. Endocr Dev 31:203–220. https://doi.org/10.1159/000439418

    Article  PubMed  Google Scholar 

  23. Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic?? Cells. J Biol Chem 286:4216–4225. https://doi.org/10.1074/jbc.M110.200295

    Article  CAS  PubMed  Google Scholar 

  24. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371. https://doi.org/10.1038/ng1201-365

    Article  CAS  PubMed  Google Scholar 

  25. Yeung N, Cline MS, Kuchinsky A et al (2008) Exploring biological networks with Cytoscape software. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi0813s23

  26. Gautier L, Cope L, Bolstad BM et al (2004) Affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. https://doi.org/10.1093/bioinformatics/btg405

    Article  CAS  PubMed  Google Scholar 

  27. Neuwirth E. (2014) RColorBrewer: ColorBrewer palettes. R Packag version 11–2: https://cran.R--project.org/package=RColorBrewer. https://cran.r-project.org/web/packages/RColorBrewer/index.html

  28. Wilson CL, Miller CJ (2005) Simpleaffy: a bioconductor package for Affymetrix quality control and data analysis. Bioinformatics 21:3683–3685. https://doi.org/10.1093/bioinformatics/bti605

    Article  CAS  PubMed  Google Scholar 

  29. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carlson M (2016) hgu133a.db: Affymetrix Human Genome U133 Set annotation data (chip hgu133a)

    Google Scholar 

  31. Revelle W (2017) Psych: procedures for personality and psychological research. Northwestern University, Evanston, Illinois, USA. https://CRAN.R-project.org/package=psych Version = 1.7.5

    Google Scholar 

  32. Gautier L, Irizarry R, Cope L (2009) Description of affy. Changes 2009:1–29

    Google Scholar 

  33. Breuer K, Foroushani AK, Laird MR (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41:1228–1233. https://doi.org/10.1093/nar/gks1147

    Article  Google Scholar 

  34. Lynn DJ, Winsor GL, Chan C (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218. https://doi.org/10.1038/msb.2008.55

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orchard S, Salwinski L, Kerrien S (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25:894–898. https://doi.org/10.1038/nbt1324

    Article  CAS  PubMed  Google Scholar 

  36. Cline MS, Smoot M, Cerami E (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382. https://doi.org/10.1038/nprot.2007.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yuen, S.C., Zhu, H., Leung, Sw. (2018). Building Molecular Interaction Networks from Microarray Data for Drug Target Screening. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics