Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana

  • Selene Napsucialy-Mendivil
  • Joseph G. DubrovskyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1761)


Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

Key words

Root branching Root system architecture Root primordium Lateral root Pericycle Root initiation Developmental stages Founder cells Quantitative analysis Morphogenesis 



We thank K. Nikoumanesh and H. H. Torres-Martínez for the critical reading of the manuscript, N. Doktor for the help with illustrations, and S. E. Ainsworth, J. M. Hurtado-Ramírez, and A. Ocádiz-Ramírez for their help with logistics. The work in the corresponding author laboratory is supported by the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT: Grant 237430) and Universidad Nacional Autónoma de México-DGAPA-PAPIIT (IN205315).


  1. 1.
    Charlton WA (1996) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: hidden half, 2nd edn. Marcel Dekker, New York, pp 149–173Google Scholar
  2. 2.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310PubMedGoogle Scholar
  3. 3.
    Malamy JE, Benfey PN (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–396CrossRefGoogle Scholar
  4. 4.
    Dubrovsky JG, Rost TL, Colón-Carmona A, Doerner PW (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30–36CrossRefPubMedGoogle Scholar
  5. 5.
    Beeckman T, Burssens S, Inzé‚ D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411PubMedGoogle Scholar
  6. 6.
    Jansen L, Demeulenaere M, Beeckman T, Eshel A, Beeckman T (2013) Lateral root development. In: Eshel A, Beeckman T (eds) Plant roots-the hidden half, 4th edn. CRC Press, Boca Raton, pp 6–1Google Scholar
  7. 7.
    Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Smet I, Tetsumura T, De Rybel B, Frei dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690CrossRefPubMedGoogle Scholar
  10. 10.
    Möller BK, Xuan W, Beeckman T (2017) Dynamic control of lateral root positioning. Curr Opin Plant Biol 35:1–7CrossRefPubMedGoogle Scholar
  11. 11.
    Van Norman JM, Xuan W, Beeckman T, Benfey PN (2013) To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140(21):4301–4310CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44PubMedGoogle Scholar
  14. 14.
    Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benková E (2011) Auxin minimum defines a developmental window for lateral root initiation. New Phytol 191:970–983CrossRefPubMedGoogle Scholar
  15. 15.
    Dubrovsky JG, Gambetta GA, Hernández-Barrera A, Shishkova S, González I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dubrovsky JG, Forde BG (2012) Quantitative analysis of lateral root development: pitfalls and how to avoid them. Plant Cell 24(1):4–14CrossRefPubMedGoogle Scholar
  17. 17.
    Dubrovsky JG, Soukup A, Napsucialy-Mendivil S, Jeknic Z, Ivanchenko MG (2009) The lateral root initiation index: an integrative measure of primordium formation. Ann Bot 103:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dubrovsky JG, Laskowski M (2017) Lateral root initiation. In: Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic Press, Oxford, pp 256–264CrossRefGoogle Scholar
  19. 19.
    Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449CrossRefPubMedGoogle Scholar
  20. 20.
    Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P, Van Quickenborne C, Zhen R-G, McKersie B, Parizot B, Beeckman T (2013) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol J 11:1092–1102CrossRefPubMedGoogle Scholar
  21. 21.
    Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347CrossRefPubMedGoogle Scholar
  22. 22.
    Lira-Ruan V, Mendivil SN, Dubrovsky JG (2013) Heuristic aspect of the lateral root initiation index: a case study of the role of nitric oxide in root branching. Appl Plant Sci 1(10):1300029. Scholar
  23. 23.
    Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG (2010) Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J 64:740–752CrossRefPubMedGoogle Scholar
  24. 24.
    Szymanowska-Pułka J (2013) Form matters: morphological aspects of lateral root development. Ann Bot 112:1643–1654CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Smet I (2012) Lateral root initiation: one step at a time. New Phytol 193(4):867–873CrossRefPubMedGoogle Scholar
  26. 26.
    Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. In: Kwang WJ (ed) International review of cytology, a survey of cell biology, vol 256. Academic, San Diego, pp 111–137CrossRefGoogle Scholar
  27. 27.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  28. 28.
    Białek J, Potocka I, Szymanowska-Pułka JM (2014) Various scenarios of the cell pattern formation in Arabidopsis lateral root. Acta Soc Bot Pol 83(1):85–89CrossRefGoogle Scholar
  29. 29.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, C del Pozo J (2012) Auxin and epigenetic regulation of SKP2B, an F-Box that represses lateral root formation. Plant Physiol 160(2):749–762CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Colón-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508CrossRefPubMedGoogle Scholar
  32. 32.
    Dubrovsky JG, Rost TL (2012) Pericycle. Wiley. New York doi: Scholar
  33. 33.
    De Smet I, Lau S, Voá U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inzé‚ D, Luschnig C, Benfey PN, Weijers D, Van Montagu MCE, Bennett MJ, Jürgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci U S A 107:2705–2710CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Van Damme D, De Rybel B, Gudesblat G, Demidov D, Grunewald W, De Smet I, Houben A, Beeckman T, Russinovaa E (2011) Arabidopsis a aurora kinases function in formative cell division plane orientation. Plant Cell 23:4013–4024CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Napsucialy-Mendivil S, Alvarez-Venegas R, Shishkova S, Dubrovsky JG (2014) ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development. J Exp Bot 65:6373–6384CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Friml F, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153CrossRefPubMedGoogle Scholar
  38. 38.
    Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18(8):2066–2073CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16(11):3069–3083CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602CrossRefPubMedGoogle Scholar
  41. 41.
    Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Science 311:385–388CrossRefPubMedGoogle Scholar
  42. 42.
    Laplaze L, Parizot B, Baker A, Ricaud L, Martiniere A, Auguy F, Franche C, Nussaume L, Bogusz D, Haseloff J (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442CrossRefPubMedGoogle Scholar
  43. 43.
    Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814CrossRefPubMedGoogle Scholar
  45. 45.
    Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    O’Brien TP, McCully ME (1981) Whole mounts of cleared preparations. The study of plant structure principles and methods. Termarcaphi Pty Ltd, Melbourne, pp 614–630Google Scholar
  47. 47.
    Lersten NR (1967) An annotated bibliography of botanical clearing methods. Iowa State J Sci 41:481–486Google Scholar
  48. 48.
    Haseloff J (2003) Old botanical techniques for new microscopes. BioTechniques 34(6):1174–1183PubMedGoogle Scholar
  49. 49.
    Herr JM Jr (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58:785–790CrossRefGoogle Scholar
  50. 50.
    Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400CrossRefPubMedGoogle Scholar
  51. 51.
    Beeckman T, Engler G (1994) An easy technique for the clearing of histochemically stained plant tissue. Plant Mol Biol Rep 12(1):37–42CrossRefGoogle Scholar
  52. 52.
    Grunewald W, De Smet I, De Rybel B, Robert HS, Van De Cotte B, Willemsen V, Gheysen G, Weijers D, Friml J, Beeckman T (2013) Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep 14(12):1136–1142CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Villani TS, Koroch AR, Simon JE (2013) An improved clearing and mounting solution to replace chloral hydrate in microscopic applications. Appl Plant Sci 1(5):1300016CrossRefGoogle Scholar
  54. 54.
    Hernández-Barrera A, Ugartechea-Chirino Y, Shishkova S, Napsucialy-Mendivil S, Soukup A, Reyes-Hernández BJ, Lira-Ruan V, Dong G, Dubrovsky JG (2011) Apical meristem exhaustion during determinate primary root growth in the moots koom 1 mutant of Arabidopsis thaliana. Planta 234:1163–1177CrossRefPubMedGoogle Scholar
  55. 55.
    Soukup A, Tylová E (2014) Essential methods of plant sample preparation for light microscopy. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis, Methods in molecular biology, vol vol 1080. Humana, New York, pp 1–23CrossRefGoogle Scholar
  56. 56.
    Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171CrossRefPubMedGoogle Scholar
  57. 57.
    Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Oxford, 322 ppGoogle Scholar
  58. 58.
    MacGregor DR, Deak KI, Ingram PA, Malamy JE (2008) Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell 20:2643–2660CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Walch-Liu P, Forde BG (2008) Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J 54:820–828CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Selene Napsucialy-Mendivil
    • 1
  • Joseph G. Dubrovsky
    • 1
    Email author
  1. 1.Departamento de Biología Molecular de Plantas, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico

Personalised recommendations