Skip to main content

Measuring Plant Root Traits Under Controlled and Field Conditions: Step-by-Step Procedures

  • Protocol
  • First Online:
Root Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1761))

Abstract

In this chapter, we present methods that we routinely use to measure plant root traits in the field and under controlled environmental conditions (using rhizoboxes). We describe procedures to (1) collect, wash, and store root samples, (2) acquire images of washed root samples, and (3) measure root traits using image analysis. In addition, we also describe sampling methods for studying belowground productivity, soil exploration, and root distribution in the first soil layers at the community level (soil coring and ingrowth core method). Because the use of rhizoboxes allows a nondestructive and dynamic measurement of traits hardly accessible in the field, a section of this chapter is devoted to the acquisition and analysis of images of roots growing in rhizoboxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  2. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pagès L (2016) Branching patterns of root systems: comparison of monocotyledonous and dicotyledonous species. Ann Bot 118:1337–1346

    Article  PubMed  PubMed Central  Google Scholar 

  4. Delory BM, Delaplace P, Fauconnier M-L et al (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil 402:1–26

    Article  CAS  Google Scholar 

  5. Mommer L, Kirkegaard J, van Ruijven J (2016) Root–root interactions: towards a rhizosphere framework. Trends Plant Sci 21:209–217

    Article  CAS  PubMed  Google Scholar 

  6. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faucon M-P, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22(5):385–394

    Article  CAS  PubMed  Google Scholar 

  8. Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardized measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  9. Nagel KA, Putz A, Gilmer F et al (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  Google Scholar 

  10. Faget M, Nagel KA, Walter A et al (2013) Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot 112:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lobet G, Draye X (2013) Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems. Plant Methods 9:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21:243–255

    Article  CAS  PubMed  Google Scholar 

  13. Faget M, Blossfeld S, von Gillhaussen P et al (2013) Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques. Front Plant Sci 4:1–8

    Article  Google Scholar 

  14. Blossfeld S (2013) Light for the dark side of plant life: planar optodes visualizing rhizosphere processes. Plant Soil 369:29–32

    Article  CAS  Google Scholar 

  15. Blossfeld S, Schreiber CM, Liebsch G et al (2013) Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. Ann Bot 112:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maeght J, Rewald B, Pierret A et al (2013) How to study deep roots - and why it matters. Front Plant Sci 4:299

    Article  PubMed  PubMed Central  Google Scholar 

  17. Steingrobe B, Schmid H, Claassen N (2000) The use of the ingrowth core method for measuring root production of arable crops - influence of soil conditions inside the ingrowth core on root growth. J Plant Nutr Soil Sci 163:617–622

    Article  CAS  Google Scholar 

  18. Steingrobe B, Schmid H, Gutser R et al (2001) Root production and root mortality of winter wheat grown on sandy and loamy soils in different farming systems. Biol Fertil Soils 33:331–339

    Article  CAS  Google Scholar 

  19. Chen S, Lin S, Reinsch T et al (2015) Comparison of ingrowth core and sequential soil core methods for estimating belowground net primary production in grass-clover swards. Grass Forage Sci 71:515–528

    Article  CAS  Google Scholar 

  20. Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196

    Article  CAS  Google Scholar 

  21. Delory BM, Weidlich EWA, Meder L et al (2017) Accuracy and bias of methods used for root length measurements in functional root research. Methods Ecol Evol 8(11):1594–1606

    Article  Google Scholar 

  22. Mohamed A, Monnier Y, Mao Z et al (2017) An evaluation of inexpensive methods for root image acquisition when using rhizotrons. Plant Methods 13:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mommer L, Wagemaker CAM, De Kroon H et al (2008) Unravelling below-ground plant distributions: a real-time polymerase chain reaction method for quantifying species proportions in mixed root samples. Mol Ecol Resour 8:947–953

    Article  CAS  PubMed  Google Scholar 

  24. Lobet G, Draye X, Périlleux C (2013) An online database for plant image analysis software tools. Plant Methods 9:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schindelin J, Arganda-carreras I, Frise E et al (2012) Fiji - an open source platform for biological image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  26. Lobet G, Pound MP, Diener J et al (2015) Root system markup language: toward an unified root architecture description language. Plant Physiol 167:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pound MP, French AP, Atkinson JA et al (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diener J, Nacry P, Périn C et al (2013) An automated image-processing pipeline for high-throughput analysis of root architecture in OpenAlea. In: 7th International conference on functional-structural plant models, Saariselkä, Finland, pp. 85–87

    Google Scholar 

  30. Leitner D, Felderer B, Vontobel P et al (2014) Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiol 164:24–35

    Article  CAS  PubMed  Google Scholar 

  31. Mairhofer S, Zappala S, Tracy SR et al (2012) RooTrak: automated recovery of three-dimensional plant root architecture in soil from X-ray microcomputed tomography images using visual tracking. Plant Physiol 158:561–569

    Article  CAS  PubMed  Google Scholar 

  32. Armengaud P, Zambaux K, Hills A et al (2009) EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    Article  CAS  PubMed  Google Scholar 

  33. Rellán-Álvarez R, Lobet G, Lindner H et al (2015) GLO-roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. elife 4:1–26

    Article  Google Scholar 

  34. Delory BM, Baudson C, Brostaux Y et al (2016) archiDART: an R package for the automated computation of plant root architectural traits. Plant Soil 398:351–365

    Article  CAS  Google Scholar 

  35. Le Bot J, Serra V, Fabre J et al (2010) DART: a software to analyse root system architecture and development from captured images. Plant Soil 326:261–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Thomas Niemeyer (Leuphana University, Germany) for its excellent technical support. We are also thankful to Dr. Guillaume Lobet for providing some images used in this book chapter. This research was funded by CNPq Brazil (Ciência Sem Fronteiras Program) with the PhD scholarship of Emanuela W.A. Weidlich, BMBF in Germany for the INPLAMINT PhD project of Richard van Duijnen within the BonaRes soils programme, as well as by the Chair of Ecosystem Functioning and Services, Leuphana University, Lüneburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Delory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delory, B.M., Weidlich, E.W.A., van Duijnen, R., Pagès, L., Temperton, V.M. (2018). Measuring Plant Root Traits Under Controlled and Field Conditions: Step-by-Step Procedures. In: Ristova, D., Barbez, E. (eds) Root Development. Methods in Molecular Biology, vol 1761. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7747-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7747-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7746-8

  • Online ISBN: 978-1-4939-7747-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics