Skip to main content

Cortical Cell Length Analysis During Gravitropic Root Growth

  • Protocol
  • First Online:
Root Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1761))

Abstract

The typical parameter used to evaluate the root growth response to gravity is the degree of root bending in time. This employs the quantification of the root tip angle toward gravity and, hence, does not directly assess the actual differential growth process. Here, we describe the cortical cell length as a parameter to quantify cell elongation during the gravitropic response, using median longitudinal confocal sections. This analysis depicts that root organ bending is a consequence of differential cellular elongation on the upper versus lower side of the gravistimulated root. Moreover, we introduce here a simple mounting setup that is suitable to gravistimulate and subsequently image seedlings on upright microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sato EM, Hijazi H, Bennet MJ et al (2015) New insights into root gravitropic signalling. J Exp Bot 66(8):2155–2165

    Article  CAS  PubMed  Google Scholar 

  2. Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116(1):213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leitz G, Kang BH, Schoenwaelder ME et al (2009) Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21(3):843–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett MJ, Merchant A, Green HG et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    Article  CAS  PubMed  Google Scholar 

  5. Luschnig C, Gaxiola RA, Grisafi P et al (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12(14):2175–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galweiler L, Guan C, Muller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    Article  CAS  PubMed  Google Scholar 

  7. Mullen JL, Ishikawa H, Evans ML (1998) Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206(4):598–603

    Article  CAS  PubMed  Google Scholar 

  8. Rashotte AM, Brady SR, Reed RC et al (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122(2):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swarup R, Kramer EM, Perry P et al (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065

    Article  CAS  PubMed  Google Scholar 

  10. Band LR, Wells DM, Larrieu A et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109(12):4668–4673

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brunoud G, Wells DM, Oliva M et al (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482(7383):103–106

    Article  CAS  PubMed  Google Scholar 

  12. Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446(7132):199–202

    Article  CAS  PubMed  Google Scholar 

  13. Dolan L (1996) Pattern in the root epidermis: an interplay of diffusible signals and cellular geometry. Ann Bot 77(6):547–553

    Article  Google Scholar 

  14. Feraru MI, Kleine-Vehn J, Feraru E (2015) Auxin carrier and signaling dynamics during gravitropic root growth. Methods Mol Biol 1309:71–80

    Article  PubMed  Google Scholar 

  15. Geldner N, Denervaud-Tendon V, Hyman DL et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59(1):169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bouché F (2017) Arabidopsis—root cell types. https://doi.org/10.6084/m9.figshare.4688752.v1. Accessed 28 Apr 2017

Download references

Acknowledgments

We are grateful to Elisabeth Sarkel for valuable comments on this manuscript, Niko Geldner for the published NPSN12-YFP fluorescent marker line, and the BOKU-VIBT Imaging Center for access. This work was supported by the Vienna Science and Technology Fund (WWTF) (Vienna Research Group project to J.K.-V.), Austrian Science Fund (FWF) (Projects: P29754 to J.K.-V. and T-728-B16 to E.F.), and the European Research Council (ERC) (Starting Grant 639478-AuxinER to J.K-V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Feraru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schöller, M., Kleine-Vehn, J., Feraru, E. (2018). Cortical Cell Length Analysis During Gravitropic Root Growth. In: Ristova, D., Barbez, E. (eds) Root Development. Methods in Molecular Biology, vol 1761. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7747-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7747-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7746-8

  • Online ISBN: 978-1-4939-7747-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics