Advertisement

Histoculture and Infection with HIV of Functional Human Lymphoid Tissue on Gelfoam®

  • Andrea Introini
  • Wendy Fitzgerald
  • Christophe Vanpouille
  • Leonid Margolis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1760)

Abstract

Gelfoam® histoculture provides a valuable tool for experimental studies of normal and pathological tissue physiology. It allows us to understand cell-cell interactions by mirroring their original spatial relationship within body tissues. Gelfoam® histoculture can be employed to model host-pathogen interactions mimicking in vivo conditions in vitro. In the present chapter, we describe a protocol to process and infect lymphoid tissue explants with HIV and maintain them in Gelfoam® histoculture at the liquid-air interface. The Gelfoam® histocultures with human immunodeficiency virus (HIV) type 1-infected tissues have been used to further understand the biology of early HIV-1 pathogenesis, as well as a novel ex vivo platform to test the efficacy and toxicity of antiviral drugs.

Key words

Lymphoid tissue Tonsils Histoculture Gelfoam® HIV-1 infection Antibody production 

References

  1. 1.
    Biancotto A, Iglehart SJ, Vanpouille C, Condack CE, Lisco A, Ruecker E, Hirsch I, Margolis LB, Grivel JC (2008) HIV-1 induced activation of CD4+ T cells creates new targets for HIV-1 infection in human lymphoid tissue ex vivo. Blood 111:699–704CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lederman MM, Margolis L (2008) The lymph node in HIV pathogenesis. Semin Immunol 20:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Harrison R (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movement. J Exp Zool 9:787–846CrossRefGoogle Scholar
  4. 4.
    Carrel A (1912) On the permanent life of tissues outside of the organism. J Exp Med 15:516–528CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hoffman RM (1991) Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells 3:86–92PubMedGoogle Scholar
  6. 6.
    Glushakova S, Baibakov B, Margolis LB, Zimmerberg J (1995) Infection of human tonsil histocultures: a model for HIV pathogenesis. Nat Med 1:1320–1322CrossRefPubMedGoogle Scholar
  7. 7.
    Glushakova S, Grivel JC, Fitzgerald W, Sylwester A, Zimmerberg J, Margolis LB (1998) Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nat Med 4:346–349CrossRefPubMedGoogle Scholar
  8. 8.
    Grivel JC, Margolis L (2009) Use of human tissue explants to study human infectious agents. Nat Protoc 4:256–269CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grivel JC, Margolis LB (1999) CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med 5:344–346CrossRefPubMedGoogle Scholar
  10. 10.
    Grivel JC, Penn ML, Eckstein DA, Schramm B, Speck RF, Abbey NW, Herndier B, Margolis L, Goldsmith MA (2000) Human immunodeficiency virus type 1 coreceptor preferences determine target T-cell depletion and cellular tropism in human lymphoid tissue. J Virol 74:5347–5351CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lisco A, Vanpouille C, Tchesnokov EP, Grivel JC, Biancotto A, Brichacek B, Elliott J, Fromentin E, Shattock R, Anton P, Gorelick R, Balzarini J, McGuigan C, Derudas M, Gotte M, Schinazi RF, Margolis L (2008) Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues. Cell Host Microbe 4:260–270CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vanpouille C, Lisco A, Introini A, Grivel JC, Munawwar A, Merbah M, Schinazi RF, Derudas M, McGuigan C, Balzarini J, Margolis L (2012) Exploiting the anti-HIV-1 activity of acyclovir: suppression of primary and drug-resistant HIV isolates and potentiation of the activity by ribavirin. Antimicrob Agents Chemother 56:2604–2611CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vanpouille C, Khandazhinskaya A, Karpenko I, Zicari S, Barreto-de-Souza V, Frolova S, Margolis L, Kochetkov S (2014) A new antiviral: chimeric 3TC-AZT phosphonate efficiently inhibits HIV-1 in human tissues ex vivo. Antiviral Res 109:125–131CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, Lisco A (2010) HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol 3:280–290CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Biancotto A, Brichacek B, Chen SS, Fitzgerald W, Lisco A, Vanpouille C, Margolis L, Grivel JC (2009) A highly sensitive and dynamic immunofluorescent cytometric bead assay for the detection of HIV-1 p24. J Virol Methods 157:98–101CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Introini
    • 1
  • Wendy Fitzgerald
    • 2
  • Christophe Vanpouille
    • 2
  • Leonid Margolis
    • 2
  1. 1.Karolinska InstituteStockholmSweden
  2. 2.National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations