Nerve Growth and Interaction in Gelfoam® Histoculture: A Nervous System Organoid

  • Robert M. Hoffman
  • Sumiyuki Mii
  • Jennifer Duong
  • Yasuyuki Amoh
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1760)

Abstract

Nestin-expressing hair follicle-associated pluripotent (HAP) stem cells reside mainly in the bulge area (BA) of the hair follicle but also in the dermal papilla (DP). The BA appears to be origin of HAP stem cells. Long-term Gelfoam® histoculture was established of whiskers isolated from transgenic mice, in which there is nestin-driven green fluorescent protein (ND-GFP). HAP stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam® forming nerve-like structures. These fibers express the neuron marker β-III tubulin-positive fibers and consisted of ND-GFP-expressing cells and extended up to 500 mm from the whisker nerve stump in Gelfoam® histoculture. The growing fibers had growth cones on their tips expressing F-actin indicating that the fibers were growing axons. HAP stem cell proliferation resulted in elongation of the follicle nerve and interaction with other nerves in 3D Gelfoam® histoculture, including the sciatic nerve, trigeminal nerve, and trigeminal nerve ganglion.

Key words

Nestin, Green fluorescent protein Hair follicle Stem cells Sensory nerve Sciatic nerve Trigeminal nerve Nerve interaction Gelfoam® histoculture 

References

  1. 1.
    Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A 100:9958–9961CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Duong J, Mii S, Uchugonova A, Liu F, Moossa AR, Hoffman RM (2012) Real-time confocal imaging of trafficking of nestin-expressing multipotent stem cells in mouse whiskers in long-term 3-D histoculture. In Vitro Cell Dev Biol Anim 48:301–305CrossRefPubMedGoogle Scholar
  3. 3.
    Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM (2005) Multipotent nestin-positive, keratin-negative hair-follicle-bulge stem cells can form neurons. Proc Natl Acad Sci U S A 102:5530–5534CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Amoh Y, Li L, Katsuoka K, Hoffman RM (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7:1865–1869CrossRefPubMedGoogle Scholar
  6. 6.
    Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X (2006) Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 168:1879–1888CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yu H, Kumar SM, Kossenkov AV, Showe L, Xu XW (2010) Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 130:1227–1236CrossRefPubMedGoogle Scholar
  8. 8.
    Amoh Y, Kanoh M, Niiyama S, Kawahara K, Satoh Y, Katsuoka K, Hoffman RM (2009) Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle 8:176–177CrossRefPubMedGoogle Scholar
  9. 9.
    Liu F, Uchugonova A, Kimura H, Zhang C, Zhao M, Zhang L, Koenig K, Duong J, Aki R, Saito N, Mii S, Amoh Y, Katsuoka K, Hoffman RM (2011) The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle 10:830–839CrossRefPubMedGoogle Scholar
  10. 10.
    Uchugonova A, Duong J, Zhang N, König K, Hoffman RM (2011) The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle. J Cell Biochem 112:2046–2050CrossRefPubMedGoogle Scholar
  11. 11.
    Philpott MP, Green MR, Kealey T (1990) Human hair growth in vitro. J Cell Sci 97(pt 3):463–471PubMedGoogle Scholar
  12. 12.
    Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y, Saito N, Katsuoka K, Hoffman RM (2013) The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture. J Cell Biochem 114:1674–1684CrossRefPubMedGoogle Scholar
  13. 13.
    Hoffman RM (2010) Histocultures and their uses. In: Encyclopedia of life sciences. Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0002573.pub2 Google Scholar
  14. 14.
    Mii S, Uehara F, Yano S, Tran B, Miwa S, Hiroshima Y, Amoh Y, Katsuoka K, Hoffman RM (2013) Nestin-expressing stem cells promote nerve growth in long-term 3-dimensional Gelfoam®-supported histoculture. PLoS One 8:e67153CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robert M. Hoffman
    • 1
    • 2
  • Sumiyuki Mii
    • 1
    • 3
  • Jennifer Duong
    • 1
  • Yasuyuki Amoh
    • 3
  1. 1.AntiCancer Inc.San DiegoUSA
  2. 2.Department of SurgeryUCSDSan DiegoUSA
  3. 3.Department of DermatologyKitasato University School of MedicineMinami WardJapan

Personalised recommendations