Skip to main content

Controlling Fibrin Network Morphology, Polymerization, and Degradation Dynamics in Fibrin Gels for Promoting Tissue Repair

  • Protocol
  • First Online:
Biomaterials for Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1758))

Abstract

Fibrin is an integral part of the clotting cascade and is formed by polymerization of the soluble plasma protein fibrinogen. Following stimulation of the coagulation cascade, thrombin activates fibrinogen, which binds to adjacent fibrin(ogen) molecules resulting in the formation of an insoluble fibrin matrix. This fibrin network is the primary protein component in clots and subsequently provides a scaffold for infiltrating cells during tissue repair. Due to its role in hemostasis and tissue repair, fibrin has been used extensively as a tissue sealant. Clinically used fibrin tissue sealants require supraphysiological concentrations of fibrinogen and thrombin to achieve fast polymerization kinetics, which results in extremely dense fibrin networks that are inhibitory to cell infiltration. Therefore, there is much interest in developing fibrin-modifying strategies to achieve rapid polymerization dynamics while maintaining a network structure that promotes cell infiltration. The properties of fibrin-based materials can be finely controlled through techniques that modulate fibrin polymerization dynamics or through the inclusion of fibrin-modifying biomaterials. Here, we describe methods for characterizing fibrin network morphology, polymerization, and degradation (fibrinolysis) dynamics in fibrin constructs for achieving fast polymerization dynamics while promoting cell infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Senior RM, Skogen WF, Griffin GL, Wilner GD (1986) Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest 77:1014–1019

    Article  CAS  Google Scholar 

  2. Weisel JW, Litvinov RI (2013) Mechanisms of fibrin polymerization and clinical implications. Blood 121:1712–1719

    Article  CAS  Google Scholar 

  3. Brown AC, Hannan RH, Timmins LH, Fernandez JD, Barker TH, Guzzetta NA (2016) Fibrin network changes in neonates after cardiopulmonary bypass. Anesthesiology 124:1021–1031

    Article  CAS  Google Scholar 

  4. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10:1502–1514

    Article  CAS  Google Scholar 

  5. Wang H, Workman G, Chen S, Barker TH, Ratner BD, Sage EH, Jiang S (2006) Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. Matrix Biol 25:20–26

    Article  Google Scholar 

  6. Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299

    Article  CAS  Google Scholar 

  7. Spotnitz WD (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34:632–634

    Article  Google Scholar 

  8. Spotnitz WD, Burks S (2008) Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion 48:1502–1516

    Article  Google Scholar 

  9. Spotnitz WD, Burks S (2010) State-of-the-art review: hemostats, sealants, and adhesives II: update as well as how and when to use the components of the surgical toolbox. Clin Appl Thromb Hemost 16:497–514

    Article  CAS  Google Scholar 

  10. Vaiman M, Krakovski D, Gavriel H (2006) Fibrin sealant reduces pain after tonsillectomy: prospective randomized study. Ann Otol Rhinol Laryngol 115:483–489

    Article  Google Scholar 

  11. Catelas I, Sese N, Wu BM, Dunn JC, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396

    Article  CAS  Google Scholar 

  12. Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH (2009) Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30:1089–1097

    Article  CAS  Google Scholar 

  13. Zhang G, Wang X, Wang Z, Zhang J, Suggs L (2006) A PEGylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng 12:9–19

    Article  CAS  Google Scholar 

  14. Huang NF, Lam A, Fang Q, Sievers RE, Li S, Lee RJ (2009) Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med 4:527–538

    Article  CAS  Google Scholar 

  15. Takei A, Tashiro Y, Nakashima Y, Sueishi K (1995) Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel. In Vitro Cell Dev Biol Anim 31:467–472

    Article  CAS  Google Scholar 

  16. Clark RA, Nielsen LD, Welch MP, McPherson JM (1995) Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J Cell Sci 108(Pt 3):1251–1261

    CAS  PubMed  Google Scholar 

  17. Falvo MR, Gorkun OV, Lord ST (2010) The molecular origins of the mechanical properties of fibrin. Biophys Chem 152:15–20

    Article  CAS  Google Scholar 

  18. Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem 112:267–276

    Article  CAS  Google Scholar 

  19. Elbjeirami WM, Yonter EO, Starcher BC, West JL (2003) Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J Biomed Mater Res A 66:513–521

    Article  Google Scholar 

  20. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT (2000) Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng 122:216–223

    Article  CAS  Google Scholar 

  21. Naito M, Nomura H, Iguchi A, Thompson WD, Smith EB (1998) Effect of crosslinking by factor XIIIa on the migration of vascular smooth muscle cells into fibrin gels. Thromb Res 90:111–116

    Article  CAS  Google Scholar 

  22. Nair CH, Shah GA, Dhall DP (1986) Effect of temperature, pH and ionic strength and composition on fibrin network structure and its development. Thromb Res 42:809–816

    Article  CAS  Google Scholar 

  23. Wolberg AS (2007) Thrombin generation and fibrin clot structure. Blood Rev 21:131–142

    Article  CAS  Google Scholar 

  24. Ameer GA, Mahmood TA, Langer R (2002) A biodegradable composite scaffold for cell transplantation. J Orthop Res 20:16–19

    Article  CAS  Google Scholar 

  25. Jiang B, Waller TM, Larson JC, Appel AA, Brey EM (2013) Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng Part A 19:224–234

    Article  CAS  Google Scholar 

  26. Zhao H, Ma L, Gong Y, Gao C, Shen J (2009) A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci Mater Med 20:135–143

    Article  CAS  Google Scholar 

  27. Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, Stefanelli V, Guzzetta N, Alexeev A, Lam WA, Lyon LA, Barker TH (2014) Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater 13:1108–1114

    Article  CAS  Google Scholar 

  28. Soon AS, Lee CS, Barker TH (2011) Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide-PEG conjugates. Biomaterials 32:4406–4414

    Article  CAS  Google Scholar 

  29. Soon AS, Stabenfeldt SE, Brown WE, Barker TH (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31:1944–1954

    Article  CAS  Google Scholar 

  30. Stabenfeldt SE, Gossett JJ, Barker TH (2010) Building better fibrin knob mimics: an investigation of synthetic fibrin knob peptide structures in solution and their dynamic binding with fibrinogen/fibrin holes. Blood 116:1352–1359

    Article  CAS  Google Scholar 

  31. Stabenfeldt SE, Gourley M, Krishnan L, Hoying JB, Barker TH (2012) Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials 33:535–544

    Article  CAS  Google Scholar 

  32. Brown AC, Baker SR, Douglas AM, Keating M, Alvarez-Elizondo MB, Botvinick EL, Guthold M, Barker TH (2015) Molecular interference of fibrin’s divalent polymerization mechanism enables modulation of multiscale material properties. Biomaterials 49:27–36

    Article  CAS  Google Scholar 

  33. Chan LW, Wang X, Wei H, Pozzo LD, White NJ, Pun SH (2015) A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis. Sci Transl Med 7(277):277ra229. https://doi.org/10.1126/scitranslmed.3010383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was supported by the American Heart Association (16SDG29870005), North Carolina State and the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley C. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sproul, E.P., Hannan, R.T., Brown, A.C. (2018). Controlling Fibrin Network Morphology, Polymerization, and Degradation Dynamics in Fibrin Gels for Promoting Tissue Repair. In: Chawla, K. (eds) Biomaterials for Tissue Engineering. Methods in Molecular Biology, vol 1758. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7741-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7741-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7739-0

  • Online ISBN: 978-1-4939-7741-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics