Skip to main content

In Vitro Model of Macrophage-Biomaterial Interactions

  • Protocol
  • First Online:
Biomaterials for Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1758))

Abstract

Tissue engineering and regenerative medicine, facilitated by biomaterial-based therapies, hold promise for the repair, replacement, or regeneration of damaged tissue. The success or failure of all implanted biomaterials, ranging from stainless steel total joint replacements to naturally or synthetically derived skin grafts, is predominantly mediated by macrophages, the primary cell of the innate immune system. In an effort to better assess safety and efficacy of novel biomaterials, evaluating and understanding macrophage-biomaterial interactions is a necessary first step. Here, we describe the culture of macrophages on 3D biomaterials, such as decellularized human cortical bone or commercially available wound matrices, and subsequent analysis using gene expression and protein secretion to help understand how biomaterial properties may influence macrophage phenotype in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diegelmann RF (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283

    Article  CAS  PubMed  Google Scholar 

  2. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. Am J Pathol 78:71–100

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Leibovich SJ, Ross R (1976) A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 84:501–514

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Khalil N, Bereznay O, Sporn M et al (1989) Macrophage production of transforming growth factor-beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med 170:727–737

    Article  CAS  PubMed  Google Scholar 

  5. McNally AK, Anderson JM (1995) Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Am J Pathol 147:1487–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Clark AE, Hench LL, Paschall HA (1976) The influence of surface chemistry on implant Interface histology: a theoretical basis for implant materials selection. J Biomed Mater Res 10:161–174

    Article  CAS  PubMed  Google Scholar 

  7. Anderson J (2001) Biological response to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  8. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed  Google Scholar 

  9. Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175:2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roh JD, Sawh-Martinez R, Brennan MP et al (2010) Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci 107:4669–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yancopoulos GD, Davis S, Gale NW et al (2015) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  Google Scholar 

  12. Spiller KL, Anfang RR, Spiller KJ et al (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willenborg S, Lucas T, van Loo G et al (2012) CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:613–625

    Article  CAS  PubMed  Google Scholar 

  14. Mirza RE, Fang MM, Ennis WJ et al (2013) Blocking interleukin-1b induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 62:2579–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue J, Sharma V, Hsieh MH et al (2015) Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun 6:1–11

    CAS  Google Scholar 

  16. Lolmede K, Campana L, Vezzoli M et al (2009) Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 85:779–787

    Article  CAS  PubMed  Google Scholar 

  17. Spiller KL, Nassiri S, Raman P et al (2015) Discovery of a novel M2c macrophage gene expression signature indicates a major role in human wound healing. Wound Repair Regen 23(2):A40

    Google Scholar 

  18. Arnold L, Henry A, Poron F et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nassiri S, Zakeri I, Weingarten MS et al (2015) Accepted article preview: published ahead of advance online publication. J Investig Dermatol 135:1700–1703

    Article  CAS  PubMed  Google Scholar 

  20. Zhou L-S, Zhao G-L, Liu Q et al (2015) Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J Inflamm 12:1–12

    Article  Google Scholar 

  21. Miron VE, Boyd A, Zhao J-W et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are Shapedby the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown BN, Londono R, Tottey S et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8:978–987

    Article  CAS  PubMed  Google Scholar 

  24. Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a Spectrum model of human macrophage activation. Immunity 40:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heil TL, Volkmann KR, Wataha JC et al (2002) Human peripheral blood monocytes versus THP-1 monocytes for in vitro biocompatibility testing of dental material components. J Oral Rehabil 29:401–407

    Article  CAS  PubMed  Google Scholar 

  27. Spiller KL, Wrona EA, Romero-Torres S et al (2016) Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp Cell Res 347(1):1–13

    Article  CAS  PubMed  Google Scholar 

  28. Aldo PB, Craveiro V, Guller S et al (2013) Effect of culture conditions on the phenotype of THP-1 monocyte cell line. Am J Reprod Immunol 70:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin Z (2012) The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 221:2–11

    Article  CAS  PubMed  Google Scholar 

  30. Zheng L, Martins-Green M (2007) Molecular mechanisms of thrombin-induced interleukin-8 (IL-8/CXCL8) expression in THP-1-derived and primary human macrophages. J Leukoc Biol 82:619–629

    Article  CAS  PubMed  Google Scholar 

  31. Sindrilaru A, Peters T, Wieschalka S et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Investig 121:985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strober W (2001) Trypan blue exclusion test of cell viability. In: The isolation and characterization of murine macrophages. Wiley, New York

    Google Scholar 

  33. Kelley JL, Rozek MM, Suenram CA et al (1987) Activation of human blood monocytes by adherence to tissue culture plastic surfaces. Exp Mol Pathol 46:266–278

    Article  CAS  PubMed  Google Scholar 

  34. Dheda K, Huggett JF, Chang JS et al (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara L. Spiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Witherel, C.E., Graney, P.L., Spiller, K.L. (2018). In Vitro Model of Macrophage-Biomaterial Interactions. In: Chawla, K. (eds) Biomaterials for Tissue Engineering. Methods in Molecular Biology, vol 1758. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7741-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7741-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7739-0

  • Online ISBN: 978-1-4939-7741-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics