EchinoBase: Tools for Echinoderm Genome Analyses

  • Gregory A. CaryEmail author
  • R. Andrew Cameron
  • Veronica F. Hinman
Part of the Methods in Molecular Biology book series (MIMB, volume 1757)


The echinoderms are a phylum of invertebrate deuterostome animals that constitute important research models for a number of biological disciplines. EchinoBase ( is an echinoderm-specific genome database and web information system that provides a platform for the interrogation and exploration of echinoderm genomic data. This chapter outlines the datasets available on EchinoBase; from assembled genomes and genome annotations, to spatial and quantitative expression data, as well as functional genomics datasets. We also highlight the bioinformatic tools available on the website to facilitate rapid inquiries using these data (genome browsers, precompiled BLAST databases, etc.), and suggest optimized strategies for performing these inquiries. We conclude with a perspective on how one could integrate various genomic resources to predict putative noncoding regulatory regions. The available datasets and analyses they permit provide the basic components required for developing an understanding of how echinoderm genomes are regulated, especially during early development, and provides a platform for comparative genomic inquiries among species in this phylum.

Key words

Echinoderm Sea urchin Sea star Sea cucumber Brittle star Genome Expression Gene regulatory network (GRN) 



EchinoBase was developed, in part, with support from the NIH (NIH1P41HD071837).


  1. 1.
    Davidson EH, Rast JP, Oliveri P et al (2002) A genomic regulatory network for development. Science 295:1669–1678CrossRefPubMedGoogle Scholar
  2. 2.
    Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474:635–639CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cary GA, Hinman VF (2017) Echinoderm development and evolution in the post-genomic era. Dev Biol 427(2):203–211CrossRefPubMedGoogle Scholar
  4. 4.
    Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Cameron RA, Kudtarkar P, Gordon SM et al (2015) Do echinoderm genomes measure up? Mar Genomics 22:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Müller H-M, Kenny EE, Sternberg PW (2004) Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol 2:e309CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kieras DE, Wood SD, Abotel K, et al. (1995) GLEAN: a computer-based tool for rapid GOMS model usability evaluation of user interface designs. Proceedings of the 8th annual ACM symposium on user interface and software technology - UIST’95. ACM Press, New York, pp 91–100Google Scholar
  9. 9.
    Tu Q, Cameron RA, Davidson EH (2014) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol 385:160–167CrossRefPubMedGoogle Scholar
  10. 10.
    Tu Q, Cameron RA, Worley KC et al (2012) Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res 22:2079–2087CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    National Center for Biotechnology Information (US) BLAST® Help,
  13. 13.
    Jones P, Binns D, Chang H-Y et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilson D, Pethica R, Zhou Y et al (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380–D386CrossRefPubMedGoogle Scholar
  15. 15.
    Gilbert SF (2000) The early development of sea urchins. In: Developmental biology. Sinauer Associates, Sunderland (MA)Google Scholar
  16. 16.
    Li E, Cui M, Peter IS et al (2014) Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo. Proc Natl Acad Sci U S A 111:E906–E913CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290PubMedGoogle Scholar
  18. 18.
    Howard-Ashby M, Materna SC, Brown CT et al (2006) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300:27–34CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10:177–184CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Samanta MP, Tongprasit W, Istrail S et al (2006) The transcriptome of the sea urchin embryo. Science 314:960–962CrossRefPubMedGoogle Scholar
  21. 21.
    Wei Z, Angerer RC, Angerer LM (2006) A database of mRNA expression patterns for the sea urchin embryo. Dev Biol 300:476–484CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Buels R, Yao E, Diesh CM et al (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genetics 9:411–412. author reply 414CrossRefPubMedGoogle Scholar
  24. 24.
    Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cameron RA, Davidson EH (2009) Flexibility of transcription factor target site position in conserved cis-regulatory modules. Dev Biol 336:122–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gregory A. Cary
    • 1
    Email author
  • R. Andrew Cameron
    • 1
    • 2
  • Veronica F. Hinman
    • 1
  1. 1.Department of Biological Sciences, Mellon InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations