Skip to main content

Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins

  • Protocol
  • First Online:
Reporter Gene Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1755))

  • 2491 Accesses

Abstract

To date, a huge range of different proteins—many with cotranslational and posttranslational subcellular localization signals—have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a “how to” protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 109.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 109.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elroy-Stein O, Merrick WC (2007) Translation initiation via cellular internal ribosome entry sites. In: Mathews MB et al (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 155–172

    Google Scholar 

  2. Martínez-Salas E (1999) Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 5:458–464

    Article  Google Scholar 

  3. Attal J, Theron MC, Houdebine LM (1999) The optimal use of IRES (internal ribosome entry site) in expression vectors. Genet Anal 15:161–165

    Article  CAS  Google Scholar 

  4. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  CAS  Google Scholar 

  5. Minskaia E, Luke GA, Ryan MD (2015) Co-expression technologies in eukaryotic cells. In: Zahoorullah S (ed) Textbook of Biotechnology. SM Online Publishers LLC, Austin, TX, pp 1–16

    Google Scholar 

  6. Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosome entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4:1560–1572

    Article  CAS  Google Scholar 

  7. Belsham GJ (1992) Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11:1105–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizuguchi H, Xu Z, Ishii-Watabe A et al (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382

    Article  CAS  Google Scholar 

  9. Urwin PE, Zubko EI, Atkinson HJ (2002) The biotechnological application and limitation of ires to deliver multiple defence genes to plant pathogens. Physiol Mol Plant Pathol 61(2):103–108

    Article  CAS  Google Scholar 

  10. Hasegawa K, Cowan AB, Nakatsuji N et al (2007) Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells 25:1707–1712

    Article  CAS  Google Scholar 

  11. Ryan MD, King AM, Thomas GP (1991) Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72:2727–2732

    Article  CAS  Google Scholar 

  12. Ryan MD, Drew J (1994) Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13:928–933

    Google Scholar 

  13. Donnelly MLL, Luke GA, Mehrotra A et al (2001) Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal “skip”. J Gen Virol 82:1013–1025

    Article  CAS  Google Scholar 

  14. Brown JD, Ryan MD (2010) Ribosome “skipping”: “stop-carry on” or “stopgo” translation. In: Atkins JF, Gesteland RF (eds) Recoding: expansion of decoding rules enriches gene expression. Springer, New York, NY, pp 101–122

    Chapter  Google Scholar 

  15. Donnelly MLL, Hughes LE, Luke GA et al (2001) The “cleavage” activities of FMDV 2A site-directed mutants and naturally occurring “2A-like” sequences. J Gen Virol 82:1027–1041

    Article  CAS  Google Scholar 

  16. Luke GA, de Felipe P, Lukashev A et al (2008) The occurrence, function and evolutionary origins of “2A-like” sequences in virus genomes. J Gen Virol 89:1036–1042

    Article  CAS  Google Scholar 

  17. Odon V, Luke GA, Roulston C et al (2013) APE-type non-LTR retrotransposons of multicellular organisms encode virus-like 2A oligopeptide sequences, which mediate translational recoding during protein synthesis. Mol Biol Evol 30:1955–1965

    Article  CAS  Google Scholar 

  18. Luke GA, Roulston C, Odon V et al (2014) Lost in translation: the biogenesis of non-LTR retrotransposon proteins. Mob Gen Elem 3(6):e27525

    Article  Google Scholar 

  19. Luke GA, Pathania US, Roulston C et al (2014) DxExNPGP – motives for the motif. Recent Res Devel Virol 9:25–42

    Google Scholar 

  20. Halpin C, Cooke SE, Barakate A et al (1999) Self processing 2A-polyproteins – a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17(4):453–459

    Article  CAS  Google Scholar 

  21. Szymczak AL, Workman CJ, Wang Y et al (2004) Correction of multi-gene deficiency in vivo using a “self-cleaving” 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594

    Article  CAS  Google Scholar 

  22. Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis 45(10):625–629

    Article  CAS  Google Scholar 

  23. Fang JM, Yi SL, Simmons A et al (2007) An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol Ther 15(6):1153–1159

    Article  CAS  Google Scholar 

  24. Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40

    Article  Google Scholar 

  25. Ha SH, Liang YS, Jung H (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8(8):928–938

    Article  CAS  Google Scholar 

  26. Luke GA, Escuin H, de Felipe P et al (2010) 2A to the fore – research, technology and applications. Biotechnol Genet Eng 26:223–260

    Article  CAS  Google Scholar 

  27. Kim JH, Lee S-R, Li L-H et al (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6(4):e18556

    Article  CAS  Google Scholar 

  28. Samalova M, Fricker M, Moore I (2006) Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins. Traffic 7:1701–1723

    Article  CAS  Google Scholar 

  29. Burén S, Ortega-Villasante C, Őtvős K et al (2012) Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in Arabidopsis. Plos ONE 7(12):e51793. https://doi.org/10.1371/journal.pone.0051973

    Article  CAS  Google Scholar 

  30. de Felipe P, Luke GA, Brown JD et al (2010) Inhibition of 2A-mediated “cleavage” of certain artificial polyproteins bearing N-terminal signal sequences. Bitotechnol J 5(2):213–223

    Article  Google Scholar 

  31. Osborn MJ, Panoskaltsis-Mortari A, McElmurry RT et al (2005) A picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Mol Ther 12(3):569–575

    Article  CAS  Google Scholar 

  32. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  Google Scholar 

  33. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124(10):4154–4161. https://doi.org/10.1172/CJ172992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ain QU, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205:120–127

    Article  CAS  Google Scholar 

  35. Iliakis G, Wang H, Perrault AR et al (2004) Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 104:14–20. https://doi.org/10.1159/000077461

    Article  CAS  PubMed  Google Scholar 

  36. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  Google Scholar 

  37. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  Google Scholar 

  38. Carroll D (2012) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  Google Scholar 

  39. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenisis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  Google Scholar 

  40. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  Google Scholar 

  41. Ding Q, Lee Y-K, Schaefer EAK et al (2013) A TALEN genome editing system to generate human stem cell-based disease models. Cell Stem Cell 12(2):238–251

    Article  CAS  Google Scholar 

  42. Xu L, Zhao P, Mariano A et al (2013) Targeted myostatin gene editing in multiple mammalian species directed by a single pair of TALE nucleases. Mol Ther Nucleic Acids 2(7):e112

    Article  Google Scholar 

  43. Joglekar AV, Hollis RP, Kuftinec G et al (2013) Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol Ther 21(9):1705–1717

    Article  CAS  Google Scholar 

  44. Mariano A, Xu L, Han R (2014) Highly efficient genome editing via 2A-coupled co-expression of two TALEN monomers. BMC Res Notes 7:628

    Google Scholar 

  45. Duda K, Lonowski LA, Kofoed-Nielsen M et al (2014) High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Res 42(10):e84. https://doi.org/10.1093/nar/gku251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gabriel R, Lombardo A, Miller JC et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823

    Article  CAS  Google Scholar 

  47. Pattanayak V, Ramirez CL, Joung JK et al (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770. https://doi.org/10.1038/NMETH.1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang W, Ye C, Liu J et al (2014) CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9(12):e115987. https://doi.org/10.1371/journal.pone.0115987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim H, Kim M-S, Wee G et al (2013) Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One 8(2):e56476. https://doi.org/10.1371/journal.pone.0056476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Article  CAS  Google Scholar 

  51. Brandsma I, van Gent DC (2012) Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr 3:9. http://www.genomeintegrity.com/content/3/1/9

    Article  CAS  Google Scholar 

  52. Certo MT, Ryu BY, Annis JE et al (2011) Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 8(8):671–676

    Article  CAS  Google Scholar 

  53. Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548

    Article  CAS  Google Scholar 

  54. Luke GA (2012) Translating 2A research into practice. In: Agbo EC (ed) Innovations in biotechnology. InTech, Croatia, pp 161–186

    Google Scholar 

  55. Luke GA, Ryan MD (2013) The protein coexpression problem in biotechnology and biomedicine; virus 2A and 2A-like sequences provide a solution. Future Virol 8:983–996

    Article  CAS  Google Scholar 

  56. Luke GA, Roulston C, Tilsner J et al (2015) Growing uses of 2A in plant biotechnology. In: Ekinci D (ed) Biotechnology. InTech, Croatia, pp 165–193

    Google Scholar 

  57. Geier M, Fauland P, Vogl T et al (2015) Compact multi-enzyme pathways in P. pastoris. Chem Commun (Camb) 51:1643–1646

    Article  CAS  Google Scholar 

  58. Ryan MD, Luke GA, Hughes LE et al (2002) The aphtho- and cardiovirus “primary” 2A/2B polyprotein “cleavage”. In: Semler BL, Wimmer E (eds) Molecular biology of picornaviruses. ASM Press, Washington, DC, pp 61–70

    Google Scholar 

  59. Sharma P, Yan F, Doronina V et al (2012) 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Res 40:3143–3151

    Article  CAS  Google Scholar 

  60. Minskaia E, Nicholson J, Ryan MD (2013) Optimisation of the foot-and-mouth disease virus 2A co-expression system for biomedical applications. BMC Biotechnol 13:67. http://www.biomedcentral.com/1472-6750/13/67

    Article  CAS  Google Scholar 

  61. Minskaia E, Ryan MD (2013) Protein coexpression using FMDV 2A: effect of “linker” residues. Biomed Res Int 2013:291730. http://dx.doi.org/101155/2013/291730

    Article  Google Scholar 

  62. Yang S, Cohen CJ, Peng PD et al (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther 15(21):1411–1423

    Article  CAS  Google Scholar 

  63. Tan Y, Liang H, Chen A et al (2010) Coexpression of double or triple copies of the rabies virus glycoprotein gene using a “self-cleaving” 2A peptide-based replication-defective human adenovirus serotype 5 vector. Biologicals 38:586–593

    Article  CAS  Google Scholar 

  64. Lorens JB, Pearsall DM, Swift SE et al (2004) Stable, stoichiometric delivery of diverse protein functions. J Biochem Biophys Methods 58:101–110

    Article  CAS  Google Scholar 

  65. Holst J, Vignali KM, Burton AR et al (2006) Rapid analysis of T-cell selection in vivo using t cell-receptor retrogenic mice. Nat Methods 3(3):191–197

    Article  CAS  Google Scholar 

  66. Ma C, Mitra A (2002) Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker. Mol Breed 9:191–199

    Article  CAS  Google Scholar 

  67. Lengler J, Holzmüller H, Salmons B (2005) FMDV-2A sequence and protein arrangement contribute to functionality of CYP2B1-reporter fusion protein. Anal Biochem 343:116–124

    Article  CAS  Google Scholar 

  68. Rothwell DG, Crossley R, Bridgeman JS et al (2010) Functional expression of secreted proteins from a bicistronic retroviral cassette based on FMDV 2A can be position-dependent. Hum Gene Ther 21(11):1631–1637

    Article  CAS  Google Scholar 

  69. Appleby SL, Irani Y, Mortimer L et al (2013) Co-expression of a scFv antibody fragment and a reporter protein using lentiviral shuttle plasmid containing a self-processing furin-2A sequence. J Immunol Methods 397:61–65

    Article  CAS  Google Scholar 

  70. Thomas CL, Maule AJ (2000) Limitations on the use of fused green fluorescent protein to investigate structure-function relationships for the cauliflower mosaic virus movement protein. J Gen Virol 81:1851–1855

    Article  CAS  Google Scholar 

  71. de Felipe P, Hughes LE, Ryan MD et al (2003) Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A-peptide. J Biol Chem 13:11441–11448

    Article  Google Scholar 

  72. Roosien J, Belsham GJ, Ryan MD et al (1990) Synthesis of foot-and-mouth disease virus capsid proteins in insect cells using baculovirus expression vectors. J Gen Virol 71:1703–1711

    Article  CAS  Google Scholar 

  73. Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39

    Article  CAS  Google Scholar 

  74. Fisicaro N, Londrigan SL, Brady JL et al (2011) Versatile co-expression of graft-protective proteins using 2A-linked cassettes. Xenotransplantation 18(2):121–130

    Article  Google Scholar 

  75. François IEJA, Hemelrijck WV, Aerts AM (2004) Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci 166(1):113–121

    Article  Google Scholar 

  76. Sun H, Lang Z, Zhu L et al (2012) Acquiring transgenic tobacco plants with insect resistance and glyphosate by fusion transformation. Plant Cell Rep 31:1877–1887

    Article  CAS  Google Scholar 

  77. Varshavsky A (1992) The N-end rule. Cell 69:725–735

    Article  CAS  Google Scholar 

  78. Knoche K, Kephart D (1999) Cloning blunt-end Pfu DNA polymerase-generated PCR fragments into pGEM®-T vector systems. Promega Notes 71:10–13

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the long-term support of our research by the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust. The University of St Andrews is a charity registered in Scotland, no. SCO13532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry A. Luke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luke, G.A., Ryan, M.D. (2018). Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins. In: Damoiseaux, R., Hasson, S. (eds) Reporter Gene Assays. Methods in Molecular Biology, vol 1755. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7724-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7724-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7722-2

  • Online ISBN: 978-1-4939-7724-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics