Disruption of Rhodopsin Dimerization in Mouse Rod Photoreceptors by Synthetic Peptides Targeting Dimer Interface

  • Sandeep Kumar
  • Alyssia Lambert
  • Jon Rainier
  • Yingbin Fu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

Synthetic peptides derived from transmembrane segments of G protein-coupled receptors (GPCR) are used to disrupt GPCR dimer interface. This peptide competition technique is an effective approach to map the dimer interface of GPCR and its functional significance. Here we present a technique to deliver synthetic transmembrane peptides to living mouse rod photoreceptors to disrupt rhodopsin (a prototypical member of Class A GPCRs) dimer formation in the endoplasmic reticulum (ER). We have shown that rhodopsin helix H1- or H8-peptide caused mislocalization of rhodopsin to the perinuclear endoplasmic reticulum (ER).

Key words

Rhodopsin Cone opsin Rhodopsin dimer Dimerization Protein trafficking Peptide competition Dimer interface G protein-coupled receptor (GPCR) Rhodopsin helix peptides Nanoparticle delivery 

Notes

Acknowledgment

We thank J. Chen for the S-opsin+ mouse line and the S-opsin antibody (MBO), W. Baehr for the Lrat –/– mouse line, J. Lem for the Rho –/– mouse line, and R.S. Molday for the 1D4 and 1D1 antibodies. Y.F. was supported by NIH grant EY022614, the Sarah Campbell Blaffer Endowment in Ophthalmolog, the E. Matilda Ziegler Foundation for the Blind, NIH core grant 2P30EY002520, and an unrestricted RPB grant to the Department of Ophthalmology at Baylor College of Medicine.

References

  1. 1.
    Harikumar KG, Wootten D, Pinon DI et al (2012) Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proc Natl Acad Sci U S A 109:18607–18612CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang J, He L, Combs CA, Roderiquez G, Norcross MA (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5:2474–2483CrossRefPubMedGoogle Scholar
  3. 3.
    Harikumar KG, Dong M, Cheng Z et al (2006) Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry (Mosc) 45:14706–14716CrossRefGoogle Scholar
  4. 4.
    Harikumar KG, Pinon DI, Miller LJ (2007) Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J Biol Chem 282:30363–30372CrossRefPubMedGoogle Scholar
  5. 5.
    Marsango S, Caltabiano G, Pou C et al (2015) Analysis of human dopamine D3 receptor quaternary structure. J Biol Chem 290:15146–15162CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128CrossRefPubMedGoogle Scholar
  7. 7.
    Jastrzebska B, Maeda T, Zhu L et al (2004) Functional characterization of rhodopsin monomers and dimers in detergents. J Biol Chem 279:54663–54675CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jastrzebska B, Fotiadis D, Jang G-F et al (2006) Functional and structural characterization of rhodopsin oligomers. J Biol Chem 281:11917–11922CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suda K, Filipek S, Palczewski K et al (2004) The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Mol Membr Biol 21:435–446CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Knepp AM, Periole X, Marrink S-J et al (2012) Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry (Mosc) 51:1819–1821CrossRefGoogle Scholar
  11. 11.
    Jastrzebska B, Chen Y, Orban T et al (2015) Disruption of rhodopsin dimerization with synthetic peptides targeting an interaction interface. J Biol Chem 290:25728–25744CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang T, Cao L-H, Kumar S et al (2016) Dimerization of visual pigments in vivo. Proc Natl Acad Sci U S A 113:9093–9098CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim H, Csaky KG (2010) Nanoparticle-integrin antagonist C16Y peptide treatment of choroidal neovascularization in rats. J Control Release 142:286–293CrossRefPubMedGoogle Scholar
  14. 14.
    Fan J, Rohrer B, Frederick JM et al (2008) Rpe65−/− and Lrat−/− mice: comparable models of leber congenital amaurosis. Invest Ophthalmol Vis Sci 49:2384–2389CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Znoiko SL, Rohrer B, Lu K et al (2005) Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65−/− mouse at early ages. Invest Ophthalmol Vis Sci 46:1473–1479CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang H, Fan J, Li S et al (2008) Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. J Neurosci 28:4008–4014CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang T, Zhang N, Baehr W, Fu Y (2011) Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proc Natl Acad Sci U A 108:8879–8884CrossRefGoogle Scholar
  18. 18.
    Insinna C, Daniele LL, Davis JA et al (2012) An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. J Neurosci 32:8094–8104CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shi G, Yau KW, Chen J, Kefalov VJ (2007) Signaling properties of a short-wave cone visual pigment and its role in phototransduction. J Neurosci 27:10084–10093CrossRefPubMedGoogle Scholar
  20. 20.
    MacKenzie D, Arendt A, Hargrave P et al (1984) Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides. Biochemistry (Mosc) 23:6544–6549CrossRefGoogle Scholar
  21. 21.
    Molday LL, Cook NJ, Kaupp UB, Molday RS (1990) The cGMP-gated cation channel of bovine rod photoreceptor cells is associated with a 240-kDa protein exhibiting immunochemical cross-reactivity with spectrin. J Biol Chem 265:18690–18695PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • Alyssia Lambert
    • 2
  • Jon Rainier
    • 2
  • Yingbin Fu
    • 1
  1. 1.Department of OphthalmologyBaylor College of MedicineHoustonUSA
  2. 2.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations