Analysis of Retinal Vascular Plexuses and Interplexus Connections

  • Aaron B. Simmons
  • Peter G. Fuerst
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)


The retina is a highly organized neural tissue consisting of three neural layers and two synaptic layers. Blood vessels that nourish the mouse and human neural retina mirror this organization consisting of three plexus layers, or plexuses, that run parallel within the retina, connected by interplexus vessels to create a closed vascular network. Here, we describe a methodology to describe this organization that can be used to interrogate factors mediating retinal vessel patterning including: coverage of the vascular plexuses, branching and orientation of the interplexus connections, and digital reconstruction of the retinal vasculature to measure vessel length and density. The methodology focuses on the mouse retina, but can easily be adapted to study retinal vessels of other species.

Key words

Development Protocol Assay Retinopathy Artery Vein Capillary Angiogenesis VEGF Macular degeneration Vasculopathy 


  1. 1.
    Masland RH (2012) The neuronal organization of the retina. Neuron 76(2):266–280. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88. CrossRefPubMedGoogle Scholar
  3. 3.
    Simmons AB, Merrill MM, Reed JC, Deans MR, Edwards MM, Fuerst PG (2016) Defective angiogenesis and intraretinal bleeding in mouse models with disrupted inner retinal lamination. Invest Ophthalmol Vis Sci 57(4):1563–1577. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA (2012) The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 96(1):147–156. CrossRefPubMedGoogle Scholar
  5. 5.
    Usui Y, Westenskow PD, Kurihara T, Aguilar E, Sakimoto S, Paris LP, Wittgrove C, Feitelberg D, Friedlander MS, Moreno SK, Dorrell MI, Friedlander M (2015) Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest 125(6):2335–2346. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Okabe K, Kobayashi S, Yamada T, Kurihara T, Tai-Nagara I, Miyamoto T, Mukouyama YS, Sato TN, Suda T, Ema M, Kubota Y (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159(3):584–596. CrossRefPubMedGoogle Scholar
  7. 7.
    Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C (2011) Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev 25(13):1399–1411. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2015) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. CrossRefPubMedGoogle Scholar
  9. 9.
    Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15(7):4738–4747PubMedGoogle Scholar
  10. 10.
    Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, Gillies MC (2012) Conditional Mullercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci 32(45):15715–15727. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43(11):3500–3510PubMedGoogle Scholar
  12. 12.
    Gnanaguru G, Bachay G, Biswas S, Pinzon-Duarte G, Hunter DD, Brunken WJ (2013) Laminins containing the beta2 and gamma3 chains regulate astrocyte migration and angiogenesis in the retina. Development 140(9):2050–2060. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scott A, Powner MB, Gandhi P, Clarkin C, Gutmann DH, Johnson RS, Ferrara N, Fruttiger M (2010) Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7):e11863. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Arnold T, Betsholtz C (2013) Correction: the importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 5(1):12. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hartnett ME (2016) Advances in understanding and management of retinopathy of prematurity. Surv Ophthalmol 62(3):257–276. CrossRefPubMedGoogle Scholar
  16. 16.
    Lutty GA (2013) Effects of diabetes on the eye. Invest Ophthalmol Vis Sci 54(14):ORSF81–ORSF87. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mehta S (2015) Age-related macular degeneration. Prim Care 42(3):377–391. CrossRefPubMedGoogle Scholar
  18. 18.
    Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Longair MH, Baker DA, Armstrong JD (2011) Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17):2453–2454. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of IdahoMoscowUSA
  2. 2.WWAMI Medical Education ProgramUniversity of Washington School of MedicineMoscowUSA

Personalised recommendations