Functional Assessment of Melanopsin-Driven Light Responses in the Mouse: Multielectrode Array Recordings

  • Shi-Jun Weng
  • Jordan M. Renna
  • Wei-Yi Chen
  • Xiong-Li Yang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a special subset of retinal output neurons capable of detecting and responding to light via a unique photopigment called melanopsin. Melanopsin activation is essential to a wide array of physiological functions, especially to those related to non-image-forming vision. Since ipRGCs only constitute a very small proportion of retinal ganglion cells, targeted recording of melanopsin-driven responses used to be a big challenge to vision researchers. Multielectrode array (MEA) recording provides a noninvasive, high throughput method to monitor melanopsin-driven responses. When synaptic inputs from rod/cone photoreceptors are silenced with glutamatergic blockers, extracellular electric signals derived from melanopsin activation can be recorded from multiple ipRGCs simultaneously by tens of microelectrodes aligned in an array. In this chapter we describe how our labs have approached MEA recording of melanopsin-driven light responses in adult mouse retinas. Instruments, tools and chemical reagents routinely used for setting up a successful MEA recording are listed, and a standard experimental procedure is provided. The implementation of this technique offers a useful paradigm that can be used to conduct functional assessments of ipRGCs and NIF vision.

Key words

Intrinsically photosensitive retinal ganglion cells Melanopsin Multielectrode array Mouse Retina 

Notes

Acknowledgments

The research of the authors is supported by grants from the National Natural Science Foundation of China (31571072, 31100796, 31571075, 31171005, 31421091, 81790640 and 81430007); the Ministry of Science and Technology of China (2011CB504602 and 2015AA020512); NIH R15 EY026255 and the Karl Kirchgessner Foundation.

References

  1. 1.
    Hattar S, Kumar M, Park A et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gooley JJ, Lu J, Fischer D et al (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106PubMedGoogle Scholar
  3. 3.
    Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hattar S, Liao HW, Takao M et al (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073CrossRefPubMedGoogle Scholar
  7. 7.
    Hattar S, Lucas RJ, Mrosovsky N et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Panda S, Provencio I, Tu DC et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527CrossRefPubMedGoogle Scholar
  9. 9.
    Barnard AR, Hattar S, Hankins MW et al (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16:389–395CrossRefPubMedGoogle Scholar
  10. 10.
    Lupi D, Oster H, Thompson S et al (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073CrossRefPubMedGoogle Scholar
  11. 11.
    Tsai JW, Hannibal J, Hagiwara G et al (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol 7:e1000125CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Renna JM, Weng S, Berson DM (2011) Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 14:827–829CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Panda S, Sato TK, Castrucci AM et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216CrossRefPubMedGoogle Scholar
  14. 14.
    Ecker JL, Dumitrescu ON, Wong KY et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wong KY, Dunn FA, Graham DM et al (2007) Synaptic influences on rat ganglion-cell photoreceptors. J Physiol 582:279–296CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sekaran S, Lupi D, Jones SL et al (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15:1099–1107CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tu DC, Zhang D, Demas J et al (2005) Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48:987–999CrossRefPubMedGoogle Scholar
  18. 18.
    Weng S, Wong KY, Berson DM (2009) Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythm 24:391–402CrossRefGoogle Scholar
  19. 19.
    Weng S, Estevez ME, Berson DM (2013) Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 8:e66480CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Margolis DJ, Detwiler PB (2007) Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J Neurosci 27:5994–6005CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lax P, Esquiva G, Fuentes-Broto L et al (2016) Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiol Int 33:374–391CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100:371–384CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sexton TJ, Bleckert A, Turner MH et al (2015) Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Dev 10:17CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48:1001–1010CrossRefPubMedGoogle Scholar
  25. 25.
    Sakamoto K, Liu C, Tosini G (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J Neurosci 24:9693–9697CrossRefPubMedGoogle Scholar
  26. 26.
    Estevez ME, Fogerson PM, Ilardi MC et al (2012) Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 32:13608–13620CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schmidt TM, Alam NM, Chen S et al (2014) A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781–788CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao X, Stafford BK, Godin AL et al (2014) Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 592:1619–1636CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Henze DA, Borhegyi Z, Csicsvari J et al (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400CrossRefPubMedGoogle Scholar
  30. 30.
    Marre O, Amodei D, Deshmukh N et al (2012) Mapping a complete neural population in the retina. J Neurosci 32:14859–14873CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Segev R, Goodhouse J, Puchalla J et al (2004) Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 7:1154–1161CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shi-Jun Weng
    • 1
  • Jordan M. Renna
    • 2
  • Wei-Yi Chen
    • 1
  • Xiong-Li Yang
    • 1
  1. 1.Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Department of BiologyUniversity of AkronAkronUSA

Personalised recommendations