Measuring Retinal Function in the Mouse

  • Jan Kremers
  • Naoyuki Tanimoto
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)


Electroretinography is a crucial assay for studying the function and the functional integrity of the retina. The mouse is an important animal model for studying the retinal neurons and circuitries. In addition, it is often used as animal model for human retinal disorders. Therefore, a good understanding of the procedures in animal handling, of the methods for data analysis and of the requirements for stimulators and for the data acquisition equipment is of importance. Here, the currently most common methods and materials for in vivo electroretinography in the mouse are discussed.

Key words

Electroretinogram ERG A-wave B-wave Oscillatory potentials Stimulators Anesthesia Equipment Analysis 


  1. 1.
    McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12. CrossRefPubMedGoogle Scholar
  2. 2.
    Kremers J, Link B (2008) Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways. J Vis 8(15/11):1–14PubMedGoogle Scholar
  3. 3.
    Kremers J, Rodrigues AR, Silveira LCL, da Silva-Filho M (2010) Flicker ERGs representing chromaticity and luminance signals. Invest Ophthalmol Vis Sci 51:577–587CrossRefPubMedGoogle Scholar
  4. 4.
    Parry NR, Murray IJ, Panorgias A, McKeefry DJ, Lee BB, Kremers J (2012) Simultaneous chromatic and luminance human Electroretinogram responses. J Physiol 590:3141–3154. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kremers J, Pangeni G, Tsaousis KT, McKeefry D, Murray IJ, Parry NR (2014) Incremental and decremental L- and M-cone driven ERG responses: II. Sawtooth stimulation. J Opt Soc Am A Opt Image Sci Vis 31(4):A170–A178. CrossRefPubMedGoogle Scholar
  6. 6.
    McKeefry D, Kremers J, Kommanapalli D, Challa NK, Murray IJ, Maguire J, Parry NR (2014) Incremental and decremental L- and M-cone-driven ERG responses: I. Square-wave pulse stimulation. J Opt Soc Am A Opt Image Sci Vis 31(4):A159–A169. CrossRefPubMedGoogle Scholar
  7. 7.
    Tsai TI, Jacob MM, McKeefry D, Murray IJ, Parry NRA, Kremers J (2016) Spatial properties of L- and M-cone driven incremental (on-) and decremental (off-) electroretinograms: evidence for the involvement of multiple post-receptoral mechanisms. J Opt Soc Am A Opt Image Sci Vis 33(3):A1–A11. CrossRefPubMedGoogle Scholar
  8. 8.
    Jacob MM, Pangeni G, Gomes BD, Souza GS, Da Silva Filho M, Silveira LCL, Maguire J, Parry NRA, McKeefry D, Kremers J (2015) The spatial properties of L- and M-cone inputs to Electroretinograms that reflect different types of post-receptoral processing. PLoS One 10(3):e0121218. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martins CM, Tsai T, Barboni MT, da Costa MF, Nagy B, Ventura DF, Kremers J (2016) The influence of stimulus size on heterochromatic modulation electroretinograms. J Vis 16(8):13. CrossRefPubMedGoogle Scholar
  10. 10.
    Kremers J, Pangeni G (2012) Electroretinographic responses to photoreceptor specific sine wave modulation. J Opt Soc Am A Opt Image Sci Vis 29(2):A309–A316CrossRefGoogle Scholar
  11. 11.
    Kommanapalli D, Murray IJ, Kremers J, Parry NR, McKeefry DJ (2014) Temporal characteristics of L- and M-cone isolating steady-state electroretinograms. J Opt Soc Am A Opt Image Sci Vis 31(4):A113–A120. CrossRefPubMedGoogle Scholar
  12. 12.
    Maguire J, Parry NR, Kremers J, Kommanapalli D, Murray IJ, McKeefry DJ (2016) Rod Electroretinograms elicited by silent substitution stimuli from the light-adapted human eye. Transl Vis Sci Technol 5(4):13. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maguire J, Parry NR, Kremers J, Murray IJ, McKeefry D (2017) The morphology of human rod ERGs obtained by silent substitution stimulation. Doc Ophthalmol 134(1):11–24. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, vol 2nd. The MIT Press, Cambridge, London, pp 139–183Google Scholar
  15. 15.
    Frishman LJ, Wang MH (2011) Electroretinogram of human, monkey and mouse. In: Levin LA, Nilsson SE, Ver Hoeve JN, Wu SM (eds) Adler's physiology of the eye. Elsevier Saunders, Ediburgh, London, New York, Oxford, Philadelphiy, St. Louis, Sydney, Toronto, pp 480–501CrossRefGoogle Scholar
  16. 16.
    Nagaraju M, Saleh M, Porciatti V (2007) IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci 48(10):4573–4579CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(2):745–751CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Saleh M, Nagaraju M, Porciatti V (2007) Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(10):4564–4572CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tanimoto N, Muehlfriedel RL, Fischer MD, Fahl E, Humphries P, Biel M, Seeliger MW (2009) Vision tests in the mouse: functional phenotyping with electroretinography. Front Biosci (Landmark Ed) (14):2730–2737Google Scholar
  20. 20.
    Tanimoto N, Sothilingam V, Seeliger MW (2013) Functional phenotyping of mouse models with ERG. Methods Mol Biol 935:69–78. CrossRefPubMedGoogle Scholar
  21. 21.
    Harazny J, Scholz M, Buder T, Lausen B, Kremers J (2009) Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol 119:181–197CrossRefPubMedGoogle Scholar
  22. 22.
    Atorf J, Scholz M, Garreis F, Lehmann J, Brauer L, Kremers J (2013) Functional protective effects of long-term memantine treatment in the DBA/2J mouse. Doc Ophthalmol 126(3):221–232. CrossRefPubMedGoogle Scholar
  23. 23.
    Lennie P, Pokorny J, Smith VC (1993) Luminance. J Opt Soc Am A 10(6):1283–1293CrossRefPubMedGoogle Scholar
  24. 24.
    Smith VC, Pokorny J (1975) Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vis Res 15:161–171CrossRefPubMedGoogle Scholar
  25. 25.
    DeMarco P, Pokorny J, Smith VC (1992) Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. J Opt Soc Am A 9(9):1465–1476CrossRefPubMedGoogle Scholar
  26. 26.
    Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis Res 40:1711–1737CrossRefPubMedGoogle Scholar
  27. 27.
    Lyubarsky AL, Daniele LL, Pugh EN Jr (2004) From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vis Res 44:3235–3251CrossRefPubMedGoogle Scholar
  28. 28.
    Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543(Pt 3):899–916CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hetling JR, Pepperberg DR (1999) Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms. J Physiol 516(Pt 2):593–609CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sieving PA (1993) Photopic on- and off-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sustar M, Hawlina M, Brecelj J (2006) ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics. Doc Ophthalmol 113:43–52CrossRefPubMedGoogle Scholar
  32. 32.
    Bush RA, Sieving PA (1996) Inner retinal contributions to the primate photopic fast flicker electroretinogram. J Opt Soc Am A 13(3):557–565CrossRefGoogle Scholar
  33. 33.
    Krishna VA, Alexander KR, Peachey NS (2002) Temporal properties of the mouse cone electroretinogram. J Neurophysiol 87:42–48CrossRefPubMedGoogle Scholar
  34. 34.
    Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19(1):442–455PubMedGoogle Scholar
  35. 35.
    Jacobs GH, Williams GA, Cahill H, Nathans J (2007) Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315(5819):1723–1725. CrossRefPubMedGoogle Scholar
  36. 36.
    Jacobs GH, Neitz J, Deegan JF 2nd (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353(6345):655–656. CrossRefPubMedGoogle Scholar
  37. 37.
    Donner KO, Rushton WAH (1959) Retinal stimulation by light substitution. J Physiol 149:288–302CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Estévez O, Spekreijse H (1974) A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vis Res 14:823–830CrossRefPubMedGoogle Scholar
  39. 39.
    Estévez O, Spekreijse H (1982) The "silent substitution" method in visual research. Vis Res 22:681–691CrossRefPubMedGoogle Scholar
  40. 40.
    Kremers J (2003) The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina. Prog Retin Eye Res 22:579–605CrossRefPubMedGoogle Scholar
  41. 41.
    Smallwood PM, Olveczky BP, Williams GL, Jacobs GH, Reese BE, Meister M, Nathans J (2003) Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Proc Natl Acad Sci U S A 100(20):11706–11711. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Greenwald SH, Kuchenbecker JA, Roberson DK, Neitz M, Neitz J (2014) S-opsin knockout mice with the endogenous M-opsin gene replaced by an L-opsin variant. Vis Neurosci 31(1):25–37. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tsai TI, Atorf J, Neitz M, Neitz J, Kremers J (2015) Rod- and cone-driven responses in mice expressing human L-cone pigment. J Neurophysiol 114(4):2230–2241. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bach M, Hoffmann M (2006) The origin of the pattern electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, vol 2nd. The MIT Press, Cambridge, London, pp 185–196Google Scholar
  45. 45.
    Sutter EE, Tran D (1992) The field topography of ERG components in man-I. The photopic luminance response. Vis Res 32(3):433–446CrossRefPubMedGoogle Scholar
  46. 46.
    Hood DC (2000) Assessing retinal function with the mulifocal technique. Prog Retin Eye Res 19:607–646CrossRefPubMedGoogle Scholar
  47. 47.
    Dutescu RM, Skosyrski S, Kociok N, Semkova I, Mergler S, Atorf J, Joussen AM, Strauss O, Kremers J (2013) Multifocal ERG recordings under visual control of the stimulated fundus in mice. Invest Ophthalmol Vis Sci 54(4):2582–2589. CrossRefPubMedGoogle Scholar
  48. 48.
    Miura G, Wang MH, Ivers KM, Frishman LJ (2009) Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res 89(1):49–62. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang J, Mojumder DK, Yan J, Xie A, Standaert RF, Qian H, Pepperberg DR, Frishman LJ (2015) In vivo electroretinographic studies of the role of GABAC receptors in retinal signal processing. Exp Eye Res 139:48–63. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Abd-El-Barr MM, Pennesi ME, Saszik SM, Barrow AJ, Lem J, Bramblett DE, Paul DL, Frishman LJ, Wu SM (2009) Genetic dissection of rod and cone pathways in the dark-adapted mouse retina. J Neurophysiol 102(3):1945–1955. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tanimoto N, Sothilingam V, Kondo M, Biel M, Humphries P, Seeliger MW (2015) Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice. Sci Rep 5:10731. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Samardzija M, Tanimoto N, Kostic C, Beck S, Oberhauser V, Joly S, Thiersch M, Fahl E, Arsenijevic Y, von Lintig J, Wenzel A, Seeliger MW, Grimm C (2009) In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death. Hum Mol Genet 18(7):1266–1275. CrossRefPubMedGoogle Scholar
  53. 53.
    Seeliger MW, Brombas A, Weiler R, Humphries P, Knop G, Tanimoto N, Muller F (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2:532. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity Hospital ErlangenErlangenGermany
  2. 2.Department of OphthalmologyUniversity Hospital Schleswig-HolsteinKielGermany

Personalised recommendations