Advertisement

Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes in Mice

  • Seul Ki Lee
  • Tiffany M. Schmidt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of photoreceptor. ipRGCs can be subdivided into at least five subtypes (M1-M5), each of which has a distinct complement of morphological and physiological properties. ipRGC subtypes can be identified morphologically based on a combination of dendritic morphology and immunostaining for a cell-type specific marker. In this chapter, we describe methods for conclusively identifying each of the five ipRGC subtypes through a combination of patch clamp electrophysiology, Neurobiotin filling, visualization of ipRGC dendrites, and immunostaining for the marker SMI-32.

Key words

Melanopsin Subtypes Patch clamp electrophysiology Dendritic stratification SMI-32 Retina Opn4 Mouse Intrinsically photosensitive retinal ganglion cell 

References

  1. 1.
    Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580.  https://doi.org/10.1016/j.tins.2011.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29:476–482.  https://doi.org/10.1523/JNEUROSCI.4117-08.2009.Functional CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schmidt TM, Kofuji P (2010) Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes. J Neurosci 30:16262–16271.  https://doi.org/10.1523/JNEUROSCI.3656-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schmidt TM, Kofuji P (2011) Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 519:1492–1504.  https://doi.org/10.1002/cne.22579 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ecker JL, Dumitrescu ON, Wong KY et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60.  https://doi.org/10.1016/j.neuron.2010.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Estevez ME, Fogerson PM, Ilardi MC et al (2012) Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 32:13608–13620.  https://doi.org/10.1523/JNEUROSCI.1422-12.2012.Form CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schmidt TM, Alam NM, Chen S et al (2014) A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781–788.  https://doi.org/10.1016/j.neuron.2014.03.022 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lucas RJ, Hattar S, Takao M et al (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247.  https://doi.org/10.1126/science.1077293 CrossRefPubMedGoogle Scholar
  9. 9.
    Güler AD, Ecker JL, Lall GS et al (2008) Melanopsin cells are the principal conduits for rod/cone input to non-image forming vision. Nature 453:102–105.  https://doi.org/10.1038/nature06829.Melanopsin CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen S-K, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95.  https://doi.org/10.1038/nature10206 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hatori M, Le H, Vollmers C et al (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451.  https://doi.org/10.1371/journal.pone.0002451 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Altimus CM, Guler AD, Villa KL et al (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci 105:19998–20003.  https://doi.org/10.1073/pnas.0808312105 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    LeGates TA, Altimus CM, Wang H et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:594–598.  https://doi.org/10.1038/nature11673 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu C, Hill DD, Wong KY (2013) Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J Neurophysiol 109:1876–1889.  https://doi.org/10.1152/jn.00579.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao X, Stafford BK, Godin AL et al (2014) Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 592:1619–1636.  https://doi.org/10.1113/jphysiol.2013.262782 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zaghloul KA, Boahen K, Demb JB (2003) Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23:2645–2654. doi: 23/7/2645 [pii]PubMedGoogle Scholar
  17. 17.
    Boycott BB, Wässle H (1974) The morphological types of ganglion cells of the domestic cat’s retina. J Physiol 240:397–419.  https://doi.org/10.1002/cne.903240411 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100:371–384.  https://doi.org/10.1152/jn.00062.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weng S, Estevez ME, Berson DM (2013) Mouse ganglion-dell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 8(6):e66480.  https://doi.org/10.1371/journal.pone.0066480 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vuong HE, Hardi CN, Barnes S et al (2015) Parallel inhibition of dopamine amacrine cells and intrinsically photosensitive retinal ganglion cells in a non-image-forming visual circuit of the mouse retina. J Neurosci 35:15955–15970.  https://doi.org/10.1523/JNEUROSCI.3382-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Do MT, Kang SH, Xue T et al (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–287.  https://doi.org/10.1038/nature07682 CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt TM, Kofuji P (2011) An isolated retinal preparation to record light response from genetically labeled retinal ganglion cells. J Vis Exp 47:e2367.  https://doi.org/10.3791/2367 Google Scholar
  23. 23.
    Boulton AA, Baker GB, Walz W (1995) Patch-clamp applications and protocols. Patch-Clamp Appl Protoc 26:259–305.  https://doi.org/10.1385/0896033112 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurobiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations