Advertisement

Ganglion Cell Assessment in Rodents with Retinal Degeneration

  • Erica L. Fletcher
  • Ursula Greferath
  • Susmita Saha
  • Emily E. Anderson
  • Kirstan A. Vessey
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

Analysis of how retinal ganglion cells change in retinal degeneration is critical for evaluating the potential of photoreceptor restorative therapies. Immunocytochemistry in combination with image analysis provides a way for quantifying not only the density of ganglion cells during disease, but also information about their morphology and an evaluation of excitatory and inhibitory synaptic inputs. Here, we describe how indirect immunofluorescence can be used in retinal whole mounts to obtain information about ganglion cells in retinal degeneration.

Key words

Ganglion cells Retina Indirect immunofluorescence Gephyrin RIBEYE Morphology Retinal degeneration Rodent Mouse 

Supplementary material

Movie 1

“Eye dissection.mp4” provides a video of the procedure used to dissect the eye and posterior eye cup (MP4 256148 kb)

References

  1. 1.
    Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317–332CrossRefPubMedGoogle Scholar
  2. 2.
    O'Brien EE, Greferath U, Vessey KA et al (2012) Electronic restoration of vision in those with photoreceptor degenerations. Clin Exp Optom 95(5):473–483CrossRefPubMedGoogle Scholar
  3. 3.
    Santos A, Humayun MS, de Juan E Jr et al (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515CrossRefPubMedGoogle Scholar
  4. 4.
    Humayun MS, Prince M, de Juan E et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148PubMedGoogle Scholar
  5. 5.
    Strettoi E, Pignatelli V (2000) Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci U S A 97(20):11020–11025CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Strettoi E, Pignatelli V, Rossi C et al (2003) Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vis Res 43(8):867–877CrossRefPubMedGoogle Scholar
  7. 7.
    Strettoi E, Porciatti V, Falsini B et al (2002) Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J Neurosci 22(13):5492–5504PubMedGoogle Scholar
  8. 8.
    Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18(21):8936–8946PubMedGoogle Scholar
  9. 9.
    Downie LE, Hatzopoulos KM, Pianta MJ et al (2010) Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity. J Comp Neurol 518(1):41–63CrossRefPubMedGoogle Scholar
  10. 10.
    Downie LE, Pianta MJ, Vingrys AJ et al (2007) Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 504(4):404–417CrossRefPubMedGoogle Scholar
  11. 11.
    Caruso DM, Owczarzak MT, Goebel DJ et al (1989) GABA-immunoreactivity in ganglion cells of the rat retina. Brain Res 476(1):129–134CrossRefPubMedGoogle Scholar
  12. 12.
    Marc RE, Liu WL, Kalloniatis M et al (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J Neurosci 10(12):4006–4034PubMedGoogle Scholar
  13. 13.
    Rodriguez AR, de Sevilla Muller LP, Brecha NC (2014) The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522(6):1411–1443CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xiang M, Zhou L, Macke JP et al (1995) The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15(7 Pt 1):4762–4785PubMedGoogle Scholar
  15. 15.
    Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51CrossRefPubMedGoogle Scholar
  16. 16.
    Damiani D, Novelli E, Mazzoni F et al (2012) Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse, a paradigm of early-onset photoreceptor degeneration. J Comp Neurol 520(7):1406–1423CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    O'Brien EE, Greferath U, Fletcher EL (2014) The effect of photoreceptor degeneration on ganglion cell morphology. J Comp Neurol 522(5):1155–1170CrossRefPubMedGoogle Scholar
  18. 18.
    Stasheff SF (2008) Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 99(3):1408–1421CrossRefPubMedGoogle Scholar
  19. 19.
    Stasheff SF, Shankar M, Andrews MP (2011) Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. J Neurophysiol 105(6):3002–3009CrossRefPubMedGoogle Scholar
  20. 20.
    Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872CrossRefPubMedGoogle Scholar
  21. 21.
    Saha S, Greferath U, Vessey KA et al (2016) Changes in ganglion cells during retinal degeneration. Neuroscience 329:1–11CrossRefPubMedGoogle Scholar
  22. 22.
    Sun WZ, Li N, He SG (2002) Large-scale morophological survey of rat retinal ganglion cells. Vis Neurosci 19(4):483–493CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Erica L. Fletcher
    • 1
  • Ursula Greferath
    • 1
  • Susmita Saha
    • 1
  • Emily E. Anderson
    • 1
  • Kirstan A. Vessey
    • 1
  1. 1.Department of Anatomy and NeuroscienceThe University of MelbourneMelbourneAustralia

Personalised recommendations