Skip to main content

Phenotyping of Gap-Junctional Coupling in the Mouse Retina

  • Protocol
  • First Online:
Mouse Retinal Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1753))

Abstract

In the mammalian retina, gap junctions, made of connexin proteins, are found in all neuronal cell types and are important for the transmission of rod photoreceptor signals, spike synchronization, noise reduction, and signal averaging. There are several methods available to assess gap junctional coupling in the retina: simultaneous electrical recordings from two adjacent cells, cut-loading, and intracellular injection of gap junction-permeable tracers. Here, we focus on the latter as it allows precise targeting of the cell of interest and is suitable to assess tracer coupling in a wide variety of retinal cell types, e.g., horizontal cells, amacrine cells, and ganglion cells. Tracer coupling experiments are usually performed in the intact retina and can provide information on the extent of coupling, the identity of synaptic partners, and (when combined with immunohistochemistry or pharmacology) the underlying connexin or the regulation of gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaney D (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190

    Article  CAS  PubMed  Google Scholar 

  2. Güldenagel M, Ammermüller J, Feigenspan A et al (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  Google Scholar 

  3. Maxeiner S, Dedek K, Janssen-Bienhold U et al (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576

    Article  CAS  PubMed  Google Scholar 

  4. Kothmann WW, Trexler EB, Whitaker CM et al (2012) Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32:6747–6759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuo SP, Schwartz GW, Rieke F (2016) Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26:3959–3970

    Article  CAS  PubMed  Google Scholar 

  7. Toychiev AH, Ivanova E, Yee CW, Sagdullaev BT (2013) Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration. J Neurosci 33:13972–13977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivanova E, Yee CW, Baldoni R, Sagdullaev BT (2016) Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36-containing gap junctions. Exp Eye Res 150:81–89

    Article  CAS  PubMed  Google Scholar 

  9. Meyer A, Hilgen G, Dorgau B et al (2014) AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions. J Cell Sci 127:1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brüggen B, Meyer A, Boven F et al (2015) Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells. Eur J Neurosci 41:734–747

    Article  PubMed  Google Scholar 

  11. Pérez de Sevilla Müller L, Dedek K, Janssen-Bienhold U et al (2010) Expression and modulation of connexin30.2, a novel gap junction protein in the mouse retina. Vis Neurosci 27:91–101

    Article  Google Scholar 

  12. Lee SCS, Meyer A, Schubert T et al (2015) Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. J Comp Neurol 523:1529–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer A, Tetenborg S, Greb H et al (2016) Connexin30.2: in vitro interaction with Connexin36 in HeLa cells and expression in AII amacrine cells and intrinsically photosensitive ganglion cells in the mouse retina. Front Mol Neurosci 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pottek M, Knop GC, Weiler R, Dedek K (2011) Electrophysiological characterization of GFP-expressing cell populations in the intact retina. J Vis Exp 57:3457. https://doi.org/10.3791/3457

    Google Scholar 

  15. Schubert T, Degen J, Willecke K et al (2005) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

    Article  CAS  PubMed  Google Scholar 

  16. Knop GC, Feigenspan A, Weiler R, Dedek K (2011) Inputs underlying the ON-OFF light responses of type 2 wide-field amacrine cells in TH::GFP mice. J Neurosci 31:4780–4791

    Article  CAS  PubMed  Google Scholar 

  17. Knop GC, Pottek M, Monyer H et al (2014) Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810

    Article  PubMed  Google Scholar 

  18. Völgyi B, Abrams J, Paul DL, Bloomfield SA (2005) Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–737

    Article  CAS  PubMed  Google Scholar 

  20. Vaney DI (1997) Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 38:267–273

    CAS  PubMed  Google Scholar 

  21. Xin D, Bloomfield S (1999) Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci 16:653–665

    Article  CAS  PubMed  Google Scholar 

  22. Bennett M, Zukin R (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (DE1154/5-1 to K.D.) and has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674901 and the European Commission (to K.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Dedek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meyer, A., Yadav, S.C., Dedek, K. (2018). Phenotyping of Gap-Junctional Coupling in the Mouse Retina. In: Tanimoto, N. (eds) Mouse Retinal Phenotyping. Methods in Molecular Biology, vol 1753. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7720-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7720-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7719-2

  • Online ISBN: 978-1-4939-7720-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics