Immunohistochemical Phenotyping of Mouse Amacrine Cell Subtypes

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

The retina shares its embryological origin with the central nervous system (CNS), so the neural circuitry of the retina has long been considered to be a relatively simple model of the neural networks in the brain, sharing similar morphologies, neurotransmitters, and receptors. Amacrine cells are, by far, the largest group of inhibitory neurons in the retina that also have the most diverse range of phenotypes of any retinal neuron. Here, I describe an approach, using immunolabeling of cryosections, to identify different subclasses of amacrine cell in the mouse retina.

Key words

Retina Amacrine cell Neurotransmitter Transcription factor Calcium signaling 

Notes

Acknowledgment

This work was supported by a grant from the National Eye Research Centre in the UK (RJ6042).

References

  1. 1.
    Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877–886.  https://doi.org/10.1038/nn0901-877 CrossRefPubMedGoogle Scholar
  2. 2.
    Euler T, Haverkamp S, Schubert T, Baden T (2014) Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 15(8):507–519CrossRefPubMedGoogle Scholar
  3. 3.
    Kay JN, Voinescu PE, Chu MW, Sanes JR (2011) Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nat Neurosci 14(8):965–972.  https://doi.org/10.1038/nn.2859 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424(1):1–23.  https://doi.org/10.1002/1096-9861(20000814)424:1<1::AID-CNE1>3.0.CO;2-V. [pii]CrossRefPubMedGoogle Scholar
  5. 5.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214.  https://doi.org/10.1016/j.cell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mo Z, Li S, Yang X, Xiang M (2004) Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131 (7):1607–1618. doi:10.1242/dev.01071Google Scholar
  7. 7.
    Badea TC, Nathans J (2011) Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vis Res 51(2):269–279.  https://doi.org/10.1016/j.visres.2010.08.039 CrossRefPubMedGoogle Scholar
  8. 8.
    Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13(2):377–393CrossRefPubMedGoogle Scholar
  9. 9.
    Sinclair JR, Nirenberg S (2001) Characterization of neuropeptide Y-expressing cells in the mouse retina using immunohistochemical and transgenic techniques. J Comp Neurol 432(3):296–306CrossRefPubMedGoogle Scholar
  10. 10.
    Jung CC, Atan D, Ng D, Ploder L, Ross SE, Klein M, Birch DG, Diez E, McInnes RR (2015) Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. Proc Natl Acad Sci U S A 112(23):E3010–E3019.  https://doi.org/10.1073/pnas.1505870112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L (2007) Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 27(46):12707–12720.  https://doi.org/10.1523/JNEUROSCI.3951-07.2007. 27/46/12707 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L (2006) Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 133(24):4815–4825CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang L, Hu F, Feng L, Luo XJ, Liang G, Zeng XY, Yi JL, Gan L (2014) Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice. Dev Dyn 243(2):279–289.  https://doi.org/10.1002/dvdy.24067 CrossRefPubMedGoogle Scholar
  14. 14.
    Dyer MA, Livesey FJ, Cepko CL, Oliver G (2003) Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet 34(1):53–58.  https://doi.org/10.1038/ng1144 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Translational Health Sciences, Bristol Medical SchoolBiomedical Sciences Building, University of BristolBristolUnited Kingdom

Personalised recommendations