Advertisement

Functional and Morphological Analysis of OFF Bipolar Cells

  • Chase B. Hellmer
  • Tomomi Ichinose
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

Retinal first-order neurons, photoreceptors, receive visual inputs and convert them to neural signals. The second-order neurons, bipolar cells then sort out the visual signals and encode them through multiple neural streams. Approximately 15 morphological types of bipolar cells have been identified, which are thought to encode different aspects of visual signals such as motion and color (Ichinose et al. J Neurosci 34(26):8761–8771, 2014; Euler et al. Nat Rev Neurosci 15(8):507–519, 2014). To investigate functional aspects of OFF bipolar cells, single cell recordings are preferred; however, bipolar cells in the mouse retina are small and hard to distinguish from other types of cells. Here, we describe our methodology and tips for immunohistochemistry and patch clamp recordings for analyzing light-evoked responses in each type of OFF bipolar cell.

Key words

Patch clamp OFF bipolar cells Immunohistochemistry Neurobiotin Retinal slice preparation Light responses 

References

  1. 1.
    Ichinose T, Fyk-Kolodziej B, Cohn J (2014) Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina. J Neurosci 34(26):8761–8771.  https://doi.org/10.1523/JNEUROSCI.3965-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Euler T, Haverkamp S, Schubert T, Baden T (2014) Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 15(8):507–519CrossRefPubMedGoogle Scholar
  3. 3.
    SM W, Gao F, Maple BR (2000) Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J Neurosci 20(12):4462–4470Google Scholar
  4. 4.
    Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H (2004) Types of bipolar cells in the mouse retina. J Comp Neurol 469(1):70–82CrossRefPubMedGoogle Scholar
  5. 5.
    Wässle H, Puller C, Muller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29(1):106–117CrossRefPubMedGoogle Scholar
  6. 6.
    Pignatelli V, Strettoi E (2004) Bipolar cells of the mouse retina: a gene gun, morphological study. J Comp Neurol 476(3):254–266CrossRefPubMedGoogle Scholar
  7. 7.
    Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5(10):747–757CrossRefPubMedGoogle Scholar
  8. 8.
    Breuninger T, Puller C, Haverkamp S, Euler T (2011) Chromatic bipolar cell pathways in the mouse retina. J Neurosci 31(17):6504–6517.  https://doi.org/10.1523/JNEUROSCI.0616-11.2011 CrossRefPubMedGoogle Scholar
  9. 9.
    Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T (2005) The primordial, blue-cone color system of the mouse retina. J Neurosci 25(22):5438–5445.  https://doi.org/10.1523/JNEUROSCI.1117-05.2005 CrossRefPubMedGoogle Scholar
  10. 10.
    Awatramani GB, Slaughter MM (2000) Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 20(18):7087–7095PubMedGoogle Scholar
  11. 11.
    DeVries SH (2000) Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28(3):847–856CrossRefPubMedGoogle Scholar
  12. 12.
    Ichinose T, Shields CR, Lukasiewicz PD (2005) Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. J Neurosci 25(7):1856–1865.  https://doi.org/10.1523/JNEUROSCI.5208-04.2005 CrossRefPubMedGoogle Scholar
  13. 13.
    Euler T, Masland RH (2000) Light-evoked responses of bipolar cells in a mammalian retina. J Neurophysiol 83(4):1817–1829CrossRefPubMedGoogle Scholar
  14. 14.
    Puller C, Ivanova E, Euler T, Haverkamp S, Schubert T (2013) OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina. Neuroscience 243:136–148.  https://doi.org/10.1016/j.neuroscience.2013.03.054 CrossRefPubMedGoogle Scholar
  15. 15.
    Lindstrom SH, Ryan DG, Shi J, DeVries SH (2014) Kainate receptor subunit diversity underlying response diversity in retinal off bipolar cells. J Physiol 592(Pt 7):1457–1477.  https://doi.org/10.1113/jphysiol.2013.265033 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Farshi P, Fyk-Kolodziej B, Krolewski DM, Walker PD, Ichinose T (2016) Dopamine D1 receptor expression is bipolar cell type-specific in the mouse retina. J Comp Neurol 524(10):2059–2079.  https://doi.org/10.1002/cne.23932 CrossRefPubMedGoogle Scholar
  17. 17.
    Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174.  https://doi.org/10.1038/nature12346 CrossRefPubMedGoogle Scholar
  18. 18.
    Duan X, Krishnaswamy A, De la Huerta I, Sanes JR (2014) Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158(4):793–807.  https://doi.org/10.1016/j.cell.2014.06.047 CrossRefPubMedGoogle Scholar
  19. 19.
    Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, McCarroll SA, Cepko CL, Regev A, Sanes JR (2016) Comprehensive classification of retinal bipolar neurons by single-cell Transcriptomics. Cell 166(5):1308–1323. e1330.  https://doi.org/10.1016/j.cell.2016.07.054 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Borghuis BG, Marvin JS, Looger LL, Demb JB (2013) Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 33(27):10972–10985.  https://doi.org/10.1523/JNEUROSCI.1241-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baden T, Berens P, Bethge M, Euler T (2013) Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr Biol 23(1):48–52.  https://doi.org/10.1016/j.cub.2012.11.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Ichinose T, Hellmer CB (2016) Differential signalling and glutamate receptor compositions in the OFF bipolar cell types in the mouse retina. J Physiol 594(4):883–894.  https://doi.org/10.1113/JP271458 CrossRefPubMedGoogle Scholar
  23. 23.
    Hellmer CB, Ichinose T (2015) Recording light-evoked postsynaptic responses in neurons in dark-adapted, mouse retinal slice preparations using patch clamp techniques. J Vis Exp 96.  https://doi.org/10.3791/52422
  24. 24.
    Mataruga A, Kremmer E, Muller F (2007) Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. J Comp Neurol 502(6):1123–1137.  https://doi.org/10.1002/cne.21367 CrossRefPubMedGoogle Scholar
  25. 25.
    Haverkamp S, Specht D, Majumdar S, Zaidi NF, Brandstatter JH, Wasco W, Wässle H, Tom Dieck S (2008) Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. J Comp Neurol 507(1):1087–1101.  https://doi.org/10.1002/cne.21612 CrossRefPubMedGoogle Scholar
  26. 26.
    Hellmer CB, Zhou Y, Fyk-Kolodziej B, Hu Z, Ichinose T (2016) Morphological and physiological analysis of type-5 and other bipolar cells in the mouse retina. Neuroscience 315:246–258.  https://doi.org/10.1016/j.neuroscience.2015.12.016 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Anatomy and Cell BiologyWayne State University School of MedicineDetroitUSA
  2. 2.Department of OphthalmologyWayne State University School of MedicineDetroitUSA

Personalised recommendations