Ex Vivo Functional Evaluation of Synaptic Transmission from Rods to Rod Bipolar Cells in Mice

  • Johan Pahlberg
  • Anurima Majumder
  • Nikolai O. Artemyev
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)


Mice have been widely used as a model organism to study mechanisms of phototransduction and synaptic transmission in the retina. Genetic manipulations and electrophysiological techniques for analysis of photoreceptor and rod bipolar cell function in mice are uniquely advanced. Here, we describe a set of biochemical and electrophysiological techniques for evaluation of synaptic transmission at the rod–rod bipolar cell synapse, which represents the first and key step in the processing of dim-light visual information.

Key words

Retina Rod photoreceptor Rod bipolar cell Immunoblot Immunofluorescence Suction electrode Patch clamp 



This work was supported by the National Institutes of Health grants EY-10843 and EY-12682 to N.O.A.


  1. 1.
    Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187. CrossRefPubMedGoogle Scholar
  2. 2.
    Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454(5):805–819. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pahlberg J, Sampath AP (2011) Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise how neural circuits in the retina improve the signal-to-noise ratio of the single-photon response. BioEssays 33(6):438–447. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yau KW, Lamb TD, Baylor DA (1977) Light-induced fluctuations in membrane current of single toad rod outer segments. Nature 269(5623):78–80CrossRefPubMedGoogle Scholar
  5. 5.
    Werblin FS (1978) Transmission along and between rods in the tiger salamander retina. J Physiol 280:449–470CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu SM (1987) Synaptic connections between neurons in living slices of the larval tiger salamander retina. J Neurosci Methods 20(2):139–149CrossRefPubMedGoogle Scholar
  7. 7.
    Pahlberg J, Frederiksen R, Pollock GE, Miyagishima KJ, Sampath AP, Cornwall MC (2017) Voltage-sensitive conductances increase the sensitivity of rod photoresponses following pigment bleaching. J Physiol 595(11):3459–3469. CrossRefPubMedGoogle Scholar
  8. 8.
    Majumder A, Pahlberg J, Boyd KK, Kerov V, Kolandaivelu S, Ramamurthy V, Sampath AP, Artemyev NO (2013) Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells. Proc Natl Acad Sci U S A 110(30):12468–12473. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ames A 3rd, Nesbett FB (1981) In vitro retina as an experimental model of the central nervous system. J Neurochem 37(4):867–877CrossRefPubMedGoogle Scholar
  10. 10.
    Rieke F, Baylor DA (1996) Molecular origin of continuous dark noise in rod photoreceptors. Biophys J 71(5):2553–2572. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nikonov S, Lamb TD, Pugh EN Jr (2000) The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse. J Gen Physiol 116(6):795–824CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Johan Pahlberg
    • 1
  • Anurima Majumder
    • 2
    • 3
  • Nikolai O. Artemyev
    • 2
  1. 1.Department of OphthalmologyStein Eye Institute, UCLALos AngelesUSA
  2. 2.Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityUSA
  3. 3.Moffitt Cancer CenterTampaUSA

Personalised recommendations