Determination of Mitochondrial Oxygen Consumption in the Retina Ex Vivo: Applications for Retinal Disease

  • Yogita K. Adlakha
  • Anand Swaroop
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)


Mitochondrial dysfunction, and consequently altered aerobic energy metabolism, is associated with numerous retinal diseases, including photoreceptor degeneration and diabetic retinopathy. Here, we describe a detailed protocol to directly measure oxygen consumption in the intact retina ex vivo using microplate-based fluorescence technology. We have used this method to assess preferred energy substrate for retinal tissue and suggested its application for investigating mechanisms of retinal disease.

Key words

Aerobic respiration Energy metabolism Photoreceptor Retinal degeneration Mouse models 



The authors are supported by the Intramural Research Program (EY000450 and EY000546) of the National Eye Institute, National Institutes of Health, Bethesda, MD, USA. YKA is supported in part by Department of Science and Technology INSPIRE Faculty award (Govt. of India). We thank Drs. Tiziana Cogliati and Jacob Nellissery for comments on the manuscript and Drs. Shan Chen and Raul Covian for technical advice.


  1. 1.
    Barot M, Gokulgandhi MR, Mitra AK (2011) Mitochondrial dysfunction in retinal diseases. Curr Eye Res 36(12):1069–1077. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:151. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vlachantoni D, Bramall AN, Murphy MP et al (2011) Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322–335. CrossRefPubMedGoogle Scholar
  4. 4.
    Osorio-Paz I, Uribe-Carvajal S, Salceda R (2015) In the early stages of diabetes, rat retinal mitochondria undergo mild uncoupling due to UCP2 activity. PLoS One 10(5):e0122727. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hurley JB, Chertov AO, Lindsay K et al (2014) Energy metabolism in the vertebrate retina. In: Furukawa T, Hurley J, Kawamura S (eds) Vertebrate photoreceptors. Springer, Japan, pp 91–137CrossRefGoogle Scholar
  6. 6.
    Wright AF, Jacobson SG, Cideciyan AV et al (2004) Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36(11):1153–1158. CrossRefPubMedGoogle Scholar
  7. 7.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(Suppl):S2–S9. CrossRefPubMedGoogle Scholar
  8. 8.
    Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183. CrossRefPubMedGoogle Scholar
  9. 9.
    Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25 (3):158–170. doi:
  10. 10.
    Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11(4):273–284. CrossRefPubMedGoogle Scholar
  11. 11.
    Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33(4):399–417. CrossRefGoogle Scholar
  12. 12.
    Camara AK, Lesnefsky EJ, Stowe DF (2010) Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal 13(3):279–347. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3(9):e3119. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fritsche LG, Igl W, Bailey JN et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48(2):134–143. CrossRefPubMedGoogle Scholar
  16. 16.
    Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Futterman S, Kinoshita JH (1959) Metabolism of the retina. I. Respiration of cattle retina. J Biol Chem 234(4):723–726PubMedGoogle Scholar
  18. 18.
    Ames A 3rd, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12(3):840–853PubMedGoogle Scholar
  19. 19.
    Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88(4):521–542CrossRefPubMedGoogle Scholar
  20. 20.
    Medrano CJ, Fox DA (1995) Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition. Exp Eye Res 61(3):273–284CrossRefPubMedGoogle Scholar
  21. 21.
    DY Y, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751. CrossRefGoogle Scholar
  22. 22.
    Kooragayala K, Gotoh N, Cogliati T et al (2015) Quantification of oxygen consumption in retina ex vivo demonstrates limited reserve capacity of photoreceptor mitochondria. Invest Ophthalmol Vis Sci 56(13):8428–8436. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258. CrossRefPubMedGoogle Scholar
  24. 24.
    Malgoyre A, Chabert C, Tonini J, Koulmann N, Bigard X, Sanchez H (2017) Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype. J Appl Physiol 122(3):666–674. CrossRefPubMedGoogle Scholar
  25. 25.
    Joyal JS, Sun Y, Gantner ML et al (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22(4):439–445. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Klepper J, Willemsen M, Verrips A et al (2001) Autosomal dominant transmission of GLUT1 deficiency. Hum Mol Genet 10(1):63–68CrossRefPubMedGoogle Scholar
  27. 27.
    Chertov AO, Holzhausen L, Kuok IT et al (2011) Roles of glucose in photoreceptor survival. J Biol Chem 286(40):34700–34711. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gerencser AA, Neilson A, Choi SW et al (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81(16):6868–6878. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurobiology-Neurodegeneration & Repair LaboratoryNational Eye Institute, National Institutes of HealthBethesdaUSA
  2. 2.Department of Cellular and Molecular NeuroscienceNational Brain Research CentreManesarIndia

Personalised recommendations