Advertisement

Single-Cell Protein Assays: A Review

  • Beiyuan Fan
  • Junbo Wang
  • Ying Xu
  • Jian Chen
Part of the Methods in Molecular Biology book series (MIMB, volume 1754)

Abstract

Quantification of single-cell proteomics provides key insights in the field of cellular heterogeneity. This chapter discusses the emerging techniques that are being used to measure the protein copy numbers at the single-cell level, which includes flow cytometry, mass cytometry, droplet cytometry, microengraving, and single-cell barcoding microchip. The advantages and limitations of each technique are compared, and future research opportunities are highlighted.

Key words

Single-cell protein assays Flow cytometry Mass cytometry Droplet cytometry Microengraving Single-cell barcoding microchip 

Notes

Acknowledgments

The authors would like to acknowledge the discussions with Xiufeng Li, Deyong Chen, and Dong Men and financial supports from the National Basic Research Program of China (973 Program, Grant No. 2014CB744600), National Natural Science Foundation of China (Grant No. 61431019, 61671430), Key Project of Chinese Academy of Sciences (QYZDB-SSW-JSC011), Natural Science Foundation of Beijing (4152056), Instrument Development Program of the Chinese Academy of Sciences, Beijing NOVA Program of Science and Technology, and Youth Innovation Promotion Association of Chinese Academy of Sciences.

References

  1. 1.
    Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581.  https://doi.org/10.1038/nature13302CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Savage N (2015) Proteomics: high-protein research. Nature 527(7576):S6–S7.  https://doi.org/10.1038/527S6aCrossRefPubMedGoogle Scholar
  3. 3.
    Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422(6928):208–215.  https://doi.org/10.1038/nature01512CrossRefPubMedGoogle Scholar
  4. 4.
    Hanash S (2003) Disease proteomics. Nature 422(6928):226–232.  https://doi.org/10.1038/nature01514CrossRefPubMedGoogle Scholar
  5. 5.
    Ma C, Fan R, Elitas M (2013) Single cell functional proteomics for assessing immune response in cancer therapy: technology, methods, and applications. Front Oncol 3:133.  https://doi.org/10.3389/fonc.2013.00133CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wei W, Shin YS, Ma C, Wang J, Elitas M, Fan R, Heath JR (2013) Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med 5(8):75.  https://doi.org/10.1186/gm479CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yu J, Zhou J, Sutherland A, Wei W, Shin YS, Xue M, Heath JR (2014) Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem 7:275–295.  https://doi.org/10.1146/annurev-anchem-071213-020323CrossRefGoogle Scholar
  8. 8.
    Su Y, Shi Q, Wei W (2017) Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics 17(3–4):1600267.  https://doi.org/10.1002/pmic.201600267CrossRefGoogle Scholar
  9. 9.
    Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA (1980) T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med 152(2):280–295CrossRefGoogle Scholar
  10. 10.
    Titus JA, Sharrow SO, Connolly JM, Segal DM (1981) Fc (IgG) receptor distributions in homogeneous and heterogeneous cell populations by flow microfluorometry. Proc Natl Acad Sci U S A 78(1):519–523CrossRefGoogle Scholar
  11. 11.
    Kavai M, Bodolay E, Szollosi J (1982) Characterization of human monocyte subpopulations by flow cytometry. Immunology 47(2):255–262PubMedPubMedCentralGoogle Scholar
  12. 12.
    Poncelet P, Carayon P (1985) Cytofluorometric quantification of cell-surface antigens by indirect immunofluorescence using monoclonal-antibodies. J Immunol Methods 85(1):65–74.  https://doi.org/10.1016/0022-1759(85)90274-1CrossRefPubMedGoogle Scholar
  13. 13.
    Christensen J, Leslie RG (1990) Quantitative measurement of Fc receptor activity on human peripheral blood monocytes and the monocyte-like cell line, U937, by laser flow cytometry. J Immunol Methods 132(2):211–219.  https://doi.org/10.1016/0022-1759(90)90032-QCrossRefPubMedGoogle Scholar
  14. 14.
    Plesner T, Hansen NE, Carlsen K (1990) Estimation of PI-bound proteins on blood cells from PNH patients by quantitative flow cytometry. Br J Haematol 75(4):585–590CrossRefGoogle Scholar
  15. 15.
    Pallis M, Robins A, Powell R (1993) Quantitative analysis of lymphocyte CD1 la using standardized flow cytometry. Scand J Immunol 38(6):559–564.  https://doi.org/10.1111/j.1365-3083.1993.tb03241.xCrossRefPubMedGoogle Scholar
  16. 16.
    Lavabre-Bertrand T, Janossy G, Ivory K, Peters R, Secker-Walker L, Porwit-MacDonald A (1994) Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry 18(4):209–217.  https://doi.org/10.1002/cyto.990180404CrossRefPubMedGoogle Scholar
  17. 17.
    Farahat N, Lens D, Zomas A, Morilla R, Matutes E, Catovsky D (1995) Quantitative flow cytometry can distinguish between normal and leukaemic B-cell precursors. Br J Haematol 91(3):640–646CrossRefGoogle Scholar
  18. 18.
    Bikoue A, George F, Poncelet P, Mutin M, Janossy G, Sampol J (1996) Quantitative analysis of leukocyte membrane antigen expression: normal adult values. Cytometry 26(2):137–147.  https://doi.org/10.1002/(SICI)1097-0320(19960615)26:2<137::AID-CYTO7>3.0.CO;2-DCrossRefPubMedGoogle Scholar
  19. 19.
    Denny TN, Stein D, Mui T, Scolpino A, Holland B (1996) Quantitative determination of surface antibody binding capacities of immune subsets present in peripheral blood of healthy adult donors. Cytometry 26(4):265–274.  https://doi.org/10.1002/(SICI)1097-0320(19961215)26:4<265::AID-CYTO5>3.0.CO;2-BCrossRefPubMedGoogle Scholar
  20. 20.
    Ginaldi L, Farahat N, Matutes E, De Martinis M, Morilla R, Catovsky D (1996) Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry. J Clin Pathol 49(7):539–544CrossRefGoogle Scholar
  21. 21.
    Ginaldi L, Matutes E, Farahat N, De Martinis M, Morilla R, Catovsky D (1996) Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry. Br J Haematol 93(4):921–927CrossRefGoogle Scholar
  22. 22.
    Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D (1998) Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol 51(5):364–369CrossRefGoogle Scholar
  23. 23.
    Cabezudo E, Carrara P, Morilla R, Matutes E (1999) Quantitative analysis of CD79b, CD5 and CD19 in mature B-cell lymphoproliferative disorders. Haematologica 84(5):413–418PubMedGoogle Scholar
  24. 24.
    D'Arena G, Musto P, Cascavilla N, Dell'Olio M, Di Renzo N, Carotenuto M (2000) Quantitative flow cytometry for the differential diagnosis of leukemic B-cell chronic lymphoproliferative disorders. Am J Hematol 64(4):275–281CrossRefGoogle Scholar
  25. 25.
    Lopez-Matas M, Rodriguez-Justo M, Morilla R, Catovsky D, Matutes E (2000) Quantitative expression of CD23 and its ligand CD21 in chronic lymphocytic leukemia. Haematologica 85(11):1140–1145PubMedGoogle Scholar
  26. 26.
    Rego EM, Garcia AB, Carneiro JJ, Falcao RP (2001) Immunophenotype of normal and leukemic bone marrow B-precursors in a Brazilian population. A comparative analysis by quantitative fluorescence cytometry. Braz J Med Biol Res 34(2):183–194CrossRefGoogle Scholar
  27. 27.
    Gritzapis AD, Baxevanis CN, Missitzis I, Katsanou ES, Alexis MN, Yotis J, Papamichail M (2003) Quantitative fluorescence cytometric measurement of estrogen and progesterone receptors: correlation with the hormone binding assay. Breast Cancer Res Treat 80(1):1–13.  https://doi.org/10.1023/A:1024462416640CrossRefPubMedGoogle Scholar
  28. 28.
    Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R, Biondi A, Basso G, Gaipa G, Group IB-A-F-M-S (2003) Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 88(11):1245–1252PubMedGoogle Scholar
  29. 29.
    Latger-Cannard V, Besson I, Doco-Lecompte T, Lecompte T (2004) A standardized procedure for quantitation of CD11b on polymorphonuclear neutrophil by flow cytometry: potential application in infectious diseases. Clin Lab Haematol 26(3):177–186.  https://doi.org/10.1111/j.1365-2257.2004.00599.xCrossRefPubMedGoogle Scholar
  30. 30.
    Smith RA, Giorgio TD (2004) Quantitation and kinetics of CD51 surface receptor expression: implications for targeted delivery. Ann Biomed Eng 32(5):635–644CrossRefGoogle Scholar
  31. 31.
    Olejniczak SH, Stewart CC, Donohue K, Czuczman MS (2006) A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol Investig 35(1):93–114.  https://doi.org/10.1080/08820130500496878CrossRefGoogle Scholar
  32. 32.
    Riquelme BD, de Isla NG, Valverde JR, Stoltz JF (2006) A simple method for quantifying high density antigens in erythrocyte membrane by flow cytometry. J Biochem Biophys Methods 68(1):31–42.  https://doi.org/10.1016/j.jbbm.2005.12.009CrossRefPubMedGoogle Scholar
  33. 33.
    Calonego SB, Barjas-Castro Mde L, Metze K, Pereira FG, Lorand-Metze I (2008) The influence of storage and leukocyte depletion on the antigen densities of FY1, FY2, MNS3 and MNS4 measured by flow cytometry. Transfus Apher Sci 38(2):101–107.  https://doi.org/10.1016/j.transci.2007.11.001CrossRefPubMedGoogle Scholar
  34. 34.
    Tam CS, Otero-Palacios J, Abruzzo LV, Jorgensen JL, Ferrajoli A, Wierda WG, Lerner S, O'Brien S, Keating MJ (2008) Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol 141(1):36–40.  https://doi.org/10.1111/j.1365-2141.2008.07012.xCrossRefPubMedGoogle Scholar
  35. 35.
    Panke C, Weininger D, Haas A, Schelter F, Schlothauer T, Bader S, Sircar R, Josel HP, Baer U, Burtscher H, Mundigl O, Grote M, Brinkmann U, Sustmann C (2013) Quantification of cell surface proteins with bispecific antibodies. Protein Eng Des Sel 26(10):645–654.  https://doi.org/10.1093/protein/gzt035CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Challagundla P, Jorgensen JL, Kanagal-Shamanna R, Gurevich I, Pierson DM, Ferrajoli A, Reyes SR, Medeiros LJ, Miranda RN (2014) Utility of quantitative flow cytometry immunophenotypic analysis of CD5 expression in small B-cell neoplasms. Arch Pathol Lab Med 138(7):903–909.  https://doi.org/10.5858/arpa.2013-0367-OACrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dragowska WH, Lopes de Menezes DE, Sartor J, Mayer LD (2000) Quantitative fluorescence cytometric analysis of Bcl-2 levels in tumor cells exhibiting a wide range of inherent Bcl-2 protein expression: correlation with Western blot analysis. Cytometry 40(4):346–352CrossRefGoogle Scholar
  38. 38.
    Maher KJ, Klimas NG, Hurwitz B, Schiff R, Fletcher MA (2002) Quantitative fluorescence measures for determination of intracellular perforin content. Clin Diagn Lab Immunol 9(6):1248–1252.  https://doi.org/10.1128/cdli.9.6.1248-1252.2002CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kay S, Herishanu Y, Pick M, Rogowski O, Baron S, Naparstek E, Polliack A, Deutsch VR (2006) Quantitative flow cytometry of ZAP-70 levels in chronic lymphocytic leukemia using molecules of equivalent soluble fluorochrome. Cytometry B Clin Cytom 70(4):218–226.  https://doi.org/10.1002/cyto.b.20078CrossRefPubMedGoogle Scholar
  40. 40.
    Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361(1–2):1–20.  https://doi.org/10.1016/j.jim.2010.07.002CrossRefPubMedGoogle Scholar
  41. 41.
    Wang L, Abbasi F, Ornatsky O, Cole KD, Misakian M, Gaigalas AK, He HJ, Marti GE, Tanner S, Stebbings R (2012) Human CD4+ lymphocytes for antigen quantification: characterization using conventional flow cytometry and mass cytometry. Cytometry A 81(7):567–575.  https://doi.org/10.1002/cyto.a.22060CrossRefPubMedGoogle Scholar
  42. 42.
    Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC (2010) Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10(11):1391–1400.  https://doi.org/10.1039/b926849aCrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Adalsteinsson VA, Tahirova N, Tallapragada N, Yao X, Campion L, Angelini A, Douce TB, Huang C, Bowman B, Williamson CA, Kwon DS, Wittrup KD, Love JC (2013) Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines. Integr Biol 5(10):1272–1281.  https://doi.org/10.1039/c3ib40059jCrossRefGoogle Scholar
  44. 44.
    De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7(2):245–248.  https://doi.org/10.1038/84701CrossRefPubMedGoogle Scholar
  45. 45.
    Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655.  https://doi.org/10.1038/nri1416CrossRefPubMedGoogle Scholar
  46. 46.
    Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from stanford. Clin Chem 48(10):1819–1827PubMedGoogle Scholar
  47. 47.
    Zenger VE, Vogt R, Mandy F, Schwartz A, Marti GE (1998) Quantitative flow cytometry: inter-laboratory variation. Cytometry 33(2):138–145.  https://doi.org/10.1002/(SICI)1097-0320(19981001)33:2<138::AID-CYTO8>3.0.CO;2-FCrossRefPubMedGoogle Scholar
  48. 48.
    Schwartz A, Fernandez-Repollet E (2001) Quantitative flow cytometry. Clin Lab Med 21(4):743–761PubMedGoogle Scholar
  49. 49.
    Marti GE, Zenger VE, Vogt R, Gaigalas A (2002) Quantitative flow cytometry: history, practice, theory, consensus, inter-laboratory variation and present status. Cytotherapy 4(1):97–98.  https://doi.org/10.1080/146532402317251626CrossRefPubMedGoogle Scholar
  50. 50.
    Maher KJ, Fletcher MA (2005) Quantitative flow cytometry in the clinical laboratory. Clin Appl Immunol Rev 5(6):353–372.  https://doi.org/10.1016/j.cair.2005.10.001CrossRefGoogle Scholar
  51. 51.
    Atkuri KR, Stevens JC, Neubert H (2015) Mass cytometry: a highly multiplexed single-cell technology for advancing drug development. Drug Metab Dispos 43(2):227–233.  https://doi.org/10.1124/dmd.114.060798CrossRefPubMedGoogle Scholar
  52. 52.
    Spitzer Matthew H, Nolan Garry P (2016) Mass cytometry: single cells, many features. Cell 165(4):780–791.  https://doi.org/10.1016/j.cell.2016.04.019CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Comi TJ, Do TD (2017) Categorizing cells on the basis of their chemical profiles: progress in single-cell mass spectrometry. J Am Chem Soc 139(11):3920–3929.  https://doi.org/10.1021/jacs.6b12822CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332.  https://doi.org/10.1016/j.it.2012.02.010CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bjornson ZB, Nolan GP, Fantl WJ (2013) Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 25(4):484–494.  https://doi.org/10.1016/j.coi.2013.07.004CrossRefPubMedGoogle Scholar
  56. 56.
    Ornatsky OI, Kinach R, Bandura DR, Lou X, Tanner SD, Baranov VI, Nitz M, Winnik MA (2008) Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. J Anal At Spectrom 23(4):463–469.  https://doi.org/10.1039/b710510jCrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ornatsky OI, Lou X, Nitz M, Schafer S, Sheldrick WS, Baranov VI, Bandura DR, Tanner SD (2008) Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal Chem 80(7):2539–2547.  https://doi.org/10.1021/ac702128mCrossRefPubMedGoogle Scholar
  58. 58.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822.  https://doi.org/10.1021/ac901049wCrossRefPubMedGoogle Scholar
  59. 59.
    Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696.  https://doi.org/10.1126/science.1198704CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Newell Evan W, Sigal N, Bendall Sean C, Nolan Garry P, Davis Mark M (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152.  https://doi.org/10.1016/j.immuni.2012.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, Mackey S, Maecker H, Swan GE, Davis MM, Norman PJ, Guethlein LA, Desai M, Parham P, Blish CA (2013) Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 5(208):208ra145.  https://doi.org/10.1126/scitranslmed.3006702CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB, Davis MM (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31(7):623–629.  https://doi.org/10.1038/nbt.2593CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC (2013) An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immunother 62(5):955–965.  https://doi.org/10.1007/s00262-013-1416-8CrossRefPubMedGoogle Scholar
  64. 64.
    Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, Litvin O, Fienberg HG, Jager A, Zunder ER, Finck R, Gedman AL, Radtke I, Downing JR, Pe'er D, Nolan GP (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197.  https://doi.org/10.1016/j.cell.2015.05.047CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, Simonds EF, Bendall SC, Sachs K, Krutzik PO, Nolan GP (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867.  https://doi.org/10.1038/nbt.2317CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mingueneau M, Krishnaswamy S, Spitzer MH, Bendall SC, Stone EL, Hedrick SM, Pe'er D, Mathis D, Nolan GP, Benoist C (2014) Single-cell mass cytometry of TCR signaling: amplification of small initial differences results in low ERK activation in NOD mice. Proc Natl Acad Sci U S A 111(46):16466–16471.  https://doi.org/10.1073/pnas.1419337111CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT, Hotson AN, Finck R, Carmi Y, Zunder ER, Fantl WJ, Bendall SC, Engleman EG, Nolan GP (2015) Immunology. An interactive reference framework for modeling a dynamic immune system. Science 349(6244):1259425.  https://doi.org/10.1126/science.1259425CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zunder ER, Lujan E, Goltsev Y, Wernig M, Nolan GP (2015) A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16(3):323–337.  https://doi.org/10.1016/j.stem.2015.01.015CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Behbehani GK, Bendall SC, Clutter MR, Fantl WJ, Nolan GP (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 81(7):552–566.  https://doi.org/10.1002/cyto.a.22075CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Darzynkiewicz Z (2012) Cycling into future: mass cytometry for the cell-cycle analysis. Cytometry A 81(7):546–548.  https://doi.org/10.1002/cyto.a.22080CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kang D-K, Monsur Ali M, Zhang K, Pone EJ, Zhao W (2014) Droplet microfluidics for single-molecule and single-cell analysis for cancer research, diagnosis and therapy. TrAC Trends Anal Chem 2014:145–153.  https://doi.org/10.1016/j.trac.2014.03.006CrossRefGoogle Scholar
  72. 72.
    Brouzes E (2012) Droplet microfluidics for single-cell analysis. Methods Mol Biol 853:105–139.  https://doi.org/10.1007/978-1-61779-567-1_10CrossRefPubMedGoogle Scholar
  73. 73.
    Joensson H, Andersson Svahn H (2012) Droplet microfluidics-a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192CrossRefGoogle Scholar
  74. 74.
    Ralf S, Martin B, Thomas P, Stephan H (2012) Droplet based microfluidics. Rep Prog Phys 75(1):016601CrossRefGoogle Scholar
  75. 75.
    Lagus TP, Edd JF (2013) A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J Phys D Appl Phys 46(11):114005CrossRefGoogle Scholar
  76. 76.
    Basova EY, Foret F (2015) Droplet microfluidics in (bio)chemical analysis. Analyst 140(1):22–38.  https://doi.org/10.1039/c4an01209gCrossRefPubMedGoogle Scholar
  77. 77.
    Collins DJ, Neild A, deMello A, Liu AQ, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15(17):3439–3459.  https://doi.org/10.1039/c5lc00614gCrossRefPubMedGoogle Scholar
  78. 78.
    Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220.  https://doi.org/10.1039/B618570CCrossRefGoogle Scholar
  79. 79.
    Huebner A, Olguin LF, Bratton D, Whyte G, Huck WT, de Mello AJ, Edel JB, Abell C, Hollfelder F (2008) Development of quantitative cell-based enzyme assays in microdroplets. Anal Chem 80(10):3890–3896.  https://doi.org/10.1021/ac800338zCrossRefPubMedGoogle Scholar
  80. 80.
    Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosensors Bioelectron 26(5):2707–2710.  https://doi.org/10.1016/j.bios.2010.09.006. S0956-5663(10)00608-1 [pii]CrossRefGoogle Scholar
  81. 81.
    Martino C, Zagnoni M, Sandison ME, Chanasakulniyom M, Pitt AR, Cooper JM (2011) Intracellular protein determination using droplet-based immunoassays. Anal Chem 83(13):5361–5368.  https://doi.org/10.1021/ac200876qCrossRefPubMedGoogle Scholar
  82. 82.
    Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J, Figdor CG, Huck WT (2013) Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13(24):4740–4744.  https://doi.org/10.1039/c3lc50945aCrossRefPubMedGoogle Scholar
  83. 83.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200.  https://doi.org/10.1073/pnas.0903542106. 0903542106 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Srisa-Art M, Bonzani IC, Williams A, Stevens MM, deMello AJ, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134(11):2239–2245.  https://doi.org/10.1039/b910472kCrossRefPubMedGoogle Scholar
  85. 85.
    Marcoux PR, Dupoy M, Mathey R, Novelli-Rousseau A, Heran V, Morales S, Rivera F, Joly PL, Moy J-P, Mallard F (2011) Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration. Colloids Surf A Physicochem Eng Asp 377(1–3):54–62.  https://doi.org/10.1016/j.colsurfa.2010.12.013CrossRefGoogle Scholar
  86. 86.
    Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891.  https://doi.org/10.1038/nprot.2013.046CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ramji R, Wang M, Bhagat AAS, Tan Shao Weng D, Thakor NV, Teck Lim C, Chen C-H (2014) Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. Biomicrofluidics 8(3):034104.  https://doi.org/10.1063/1.4878635CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478.  https://doi.org/10.1038/nbt.2857CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858.  https://doi.org/10.1039/b902504aCrossRefPubMedGoogle Scholar
  90. 90.
    Shim J-u, Olguin LF, Whyte G, Scott D, Babtie A, Abell C, Huck WTS, Hollfelder F (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc 131(42):15251–15256.  https://doi.org/10.1021/ja904823zCrossRefPubMedGoogle Scholar
  91. 91.
    Baret JC, Beck Y, Billas-Massobrio I, Moras D, Griffiths AD (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17(5):528–536.  https://doi.org/10.1016/j.chembiol.2010.04.010CrossRefPubMedGoogle Scholar
  92. 92.
    Hammar P, Angermayr SA, Sjostrom SL, van der Meer J, Hellingwerf KJ, Hudson EP, Joensson HN (2015) Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. Biotechnol Biofuels 8:193.  https://doi.org/10.1186/s13068-015-0380-2CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ng EX, Miller MA, Jing T, Chen C-H (2016) Single cell multiplexed assay for proteolytic activity using droplet microfluidics. Biosens Bioelectron 81:408–414.  https://doi.org/10.1016/j.bios.2016.03.002CrossRefPubMedGoogle Scholar
  94. 94.
    Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR (2017) Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep 7:44447.  https://doi.org/10.1038/srep44447CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707.  https://doi.org/10.1038/nbt1210CrossRefPubMedGoogle Scholar
  96. 96.
    Bradshaw EM, Kent SC, Tripuraneni V, Orban T, Ploegh HL, Hafler DA, Love JC (2008) Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin Immunol 129(1):10–18.  https://doi.org/10.1016/j.clim.2008.06.009CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Song Q, Han Q, Bradshaw EM, Kent SC, Raddassi K, Nilsson B, Nepom GT, Hafler DA, Love JC (2010) On-chip activation and subsequent detection of individual antigen-specific T cells. Anal Chem 82(2):473–477.  https://doi.org/10.1021/ac9024363CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Choi J, Love KR, Gong Y, Gierahn TM, Love JC (2011) Immuno-hybridization chain reaction for enhancing detection of individual cytokine-secreting human peripheral mononuclear cells. Anal Chem 83(17):6890–6895.  https://doi.org/10.1021/ac2013916CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Panagiotou V, Love KR, Jiang B, Nett J, Stadheim T, Love JC (2011) Generation and screening of Pichia pastoris strains with enhanced protein production by use of microengraving. Appl Environ Microbiol 77(9):3154–3156.  https://doi.org/10.1128/aem.00104-11CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Varadarajan N, Julg B, Yamanaka YJ, Chen H, Ogunniyi AO, McAndrew E, Porter LC, Piechocka-Trocha A, Hill BJ, Douek DC, Pereyra F, Walker BD, Love JC (2011) A high-throughput single-cell analysis of human CD8(+) T cell functions reveals discordance for cytokine secretion and cytolysis. J Clin Invest 121(11):4322–4331.  https://doi.org/10.1172/JCI58653CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109(5):1607–1612.  https://doi.org/10.1073/pnas.1117194109CrossRefPubMedGoogle Scholar
  102. 102.
    Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN, Richter JM, Walker BD, Love JC (2012) Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc Natl Acad Sci U S A 109(10):3885–3890.  https://doi.org/10.1073/pnas.1111205109CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Yamanaka YJ, Berger CT, Sips M, Cheney PC, Alter G, Love JC (2012) Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr Biol 4(10):1175–1184.  https://doi.org/10.1039/c2ib20167dCrossRefGoogle Scholar
  104. 104.
    Yamanaka YJ, Szeto GL, Gierahn TM, Forcier TL, Benedict KF, Brefo MS, Lauffenburger DA, Irvine DJ, Love JC (2012) Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal Chem 84(24):10531–10536.  https://doi.org/10.1021/ac302264qCrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nguyen CQ, Ogunniyi AO, Karabiyik A, Love JC (2013) Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjogren's syndrome. PLoS One 8(3):e58127.  https://doi.org/10.1371/journal.pone.0058127CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Torres AJ, Contento RL, Gordo S, Wucherpfennig KW, Love JC (2013) Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells. Lab Chip 13(1):90–99.  https://doi.org/10.1039/c2lc40869dCrossRefPubMedGoogle Scholar
  107. 107.
    Torres AJ, Hill AS, Love JC (2014) Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal Chem 86(23):11562–11569.  https://doi.org/10.1021/ac4030297CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Fan R, Vermesh O, Srivastava A, Yen BK, Qin L, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26(12):1373–1378.  https://doi.org/10.1038/nbt.1507CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Shin YS, Ahmad H, Shi Q, Kim H, Pascal TA, Fan R, Goddard WA 3rd, Heath JR (2010) Chemistries for patterning robust DNA microbarcodes enable multiplex assays of cytoplasm proteins from single cancer cells. Chemphyschem 11(14):3063–3069.  https://doi.org/10.1002/cphc.201000528CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ahmad H, Sutherland A, Shin YS, Hwang K, Qin L, Krom R-J, Heath JR (2011) A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins. Rev Sci Instrum 82(9):094301.  https://doi.org/10.1063/1.3636077CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu CC, Kwong GA, Radu CG, Ribas A, Heath JR (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743.  https://doi.org/10.1038/nm.2375CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Shin YS, Remacle F, Fan R, Hwang K, Wei W, Ahmad H, Levine RD, Heath JR (2011) Protein signaling networks from single cell fluctuations and information theory profiling. Biophys J 100(10):2378–2386.  https://doi.org/10.1016/j.bpj.2011.04.025CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Vermesh U, Vermesh O, Wang J, Kwong GA, Ma C, Hwang K, Heath JR (2011) High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew Chem 123(32):7516–7518.  https://doi.org/10.1002/ange.201102249CrossRefGoogle Scholar
  114. 114.
    Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS, Guo D, Hood L, Mischel PS, Heath JR (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109(2):419–424.  https://doi.org/10.1073/pnas.1110865109CrossRefPubMedGoogle Scholar
  115. 115.
    Wang J, Tham D, Wei W, Shin YS, Ma C, Ahmad H, Shi Q, Yu J, Levine RD, Heath JR (2012) Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett 12(12):6101–6106.  https://doi.org/10.1021/nl302748qCrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Kwak M, Mu L, Lu Y, Chen JJ, Wu Y, Brower K, Fan R (2013) Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction. Front Oncol 3.  https://doi.org/10.3389/fonc.2013.00010
  117. 117.
    Lu Y, Chen JJ, Mu L, Xue Q, Wu Y, Wu PH, Li J, Vortmeyer AO, Miller-Jensen K, Wirtz D, Fan R (2013) High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal Chem 85(4):2548–2556.  https://doi.org/10.1021/ac400082eCrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, Cochran AJ, Witte ON, Baltimore D, Chmielowski B, Economou JS, Comin-Anduix B, Ribas A, Heath JR (2013) Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 3(4):418–429.  https://doi.org/10.1158/2159-8290.CD-12-0383CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wei W, Shi Q, Remacle F, Qin L, Shackelford DB, Shin YS, Mischel PS, Levine RD, Heath JR (2013) Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proc Natl Acad Sci U S A 110(15):E1352–E1360.  https://doi.org/10.1073/pnas.1303060110CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Deng Y, Zhang Y, Sun S, Wang Z, Wang M, Yu B, Czajkowsky DM, Liu B, Li Y, Wei W, Shi Q (2014) An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep 4.  https://doi.org/10.1038/srep07499
  121. 121.
    Elitas M, Brower K, Lu Y, Chen JJ, Fan R (2014) A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. Lab Chip 14(18):3582–3588.  https://doi.org/10.1039/C4LC00676CCrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, Amirel AD, Pe’er D, Miller-Jensen K, Fan R (2015) Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 112(7):E607–E615.  https://doi.org/10.1073/pnas.1416756112CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Xue M, Wei W, Su Y, Kim J, Shin YS, Mai WX, Nathanson DA, Heath JR (2015) Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J Am Chem Soc 137(12):4066–4069.  https://doi.org/10.1021/jacs.5b00944CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Zhang Y, Tang Y, Sun S, Wang Z, Wu W, Zhao X, Czajkowsky DM, Li Y, Tian J, Xu L, Wei W, Deng Y, Shi Q (2015) Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal Chem 87(19):9761–9768.  https://doi.org/10.1021/acs.analchem.5b01901CrossRefPubMedGoogle Scholar
  125. 125.
    Ramirez L, Herschkowitz JI, Wang J (2016) Stand-sit microchip for high-throughput, multiplexed analysis of single cancer cells. Sci Rep 6:32505.  https://doi.org/10.1038/srep32505CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yang L, Wang Z, Deng Y, Li Y, Wei W, Shi Q (2016) Single-cell, multiplexed protein detection of rare tumor cells based on a beads-on-barcode antibody microarray. Anal Chem 88(22):11077–11083.  https://doi.org/10.1021/acs.analchem.6b03086CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Transducer Technology, Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of EducationShanghai Jiao-Tong University School of MedicineShanghaiChina

Personalised recommendations