Embryonary Mouse Cardiac Fibroblast Isolation

  • Alejandra Garate-Carrillo
  • Israel Ramirez
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)


Mouse cardiac fibroblasts have been widely used as an in vitro model for studying fundamental biological processes and mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Cardiac FBs are relatively easy to culture in a dish and can be manipulated using molecular and pharmacological tools. Because FBs rapidly decrease cell cycle division and proliferative rate after birth, they are prone to phenotypic changes and senescence in cell culture soon after a few passages. Therefore, primary cultures of differentiated fibroblasts from embryos are more desirable. Below we will describe a method that provides good cell yield and viability of E16 CD-1 mouse embryonic cardiac fibroblasts in primary cultures.

Key words

Cardiac fibroblasts Heart Enzymatic digestion Embryonic mice Isolation Cell culture 


  1. 1.
    Souders C, Bowers S, Baudino TA (2012) Cardiac fibroblast: the renaissance. Cell 105(12):1164–1176Google Scholar
  2. 2.
    Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61PubMedGoogle Scholar
  3. 3.
    Zak R (1974) Development and proliferative capacity of cardiac muscle cells. Circ Res 32(Suppl 2):17–26Google Scholar
  4. 4.
    Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026CrossRefPubMedGoogle Scholar
  5. 5.
    Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterization of cardiac fibroblasts. Cardiovasc Res 65:40–51CrossRefPubMedGoogle Scholar
  6. 6.
    Harvey PR, Rosenthal N (1999) Heart development, vol 1. Academic, New YorkGoogle Scholar
  7. 7.
    Lajiness JD, Conway SJ (2012) The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Translat Res 5(6):739–748CrossRefGoogle Scholar
  8. 8.
    Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105(10):934–947CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gittenberger-de Groot AC, VPM MMMT, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82(10):1043–1052CrossRefPubMedGoogle Scholar
  10. 10.
    Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Hahurij ND, Lie-Venema H, Markwald RR, Poelmann RE, Schalij MJ, Gittenberger-de Groot AC (2008) Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 117(12):1508–1517CrossRefPubMedGoogle Scholar
  11. 11.
    Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174(2):221–232CrossRefPubMedGoogle Scholar
  12. 12.
    Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46(8):1005–1013PubMedGoogle Scholar
  13. 13.
    Lie-Venema H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, Hoeben RC, deRuiter MC, Poelmann RE, Gittenberger-de Groot AC (2007) Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J 7:1777–1798CrossRefGoogle Scholar
  14. 14.
    Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JB (2012) Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 366(2):111–124CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Norris RA, Borg TK, Butcher JT, Baudino TA, Banerjee I, Markwald RR (2008) Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann New York Acad Sci 1123:30–40CrossRefGoogle Scholar
  16. 16.
    Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99:12877–12882CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Goodpaster T, Legesse-Miller A, Hameed MR, Aisner SC, Randolph-Habecker J, Coller HA (2008) An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem 56(4):347–358CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102(7):752–760CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Takeda N, Manabe I (2011) Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam 2011:535241PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16(2):233–244CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Noseda M, Schneider MD (2009) Fibroblasts inform the heart: control of cardiomyocyte cycling and size by age-dependent paracrine signals. Dev Cell 16(2):161–162CrossRefPubMedGoogle Scholar
  23. 23.
    Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93(5):421–428CrossRefPubMedGoogle Scholar
  24. 24.
    Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98(6):801–810CrossRefPubMedGoogle Scholar
  25. 25.
    Spach MS, Boineau JP (1997) Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol 20(2 Pt 2):397–413CrossRefPubMedGoogle Scholar
  26. 26.
    Ottaviano FG, Yee KO (2011) Communication signals between cardiac fibroblasts and cardiac myocytes. J Cardiovasc Pharmacol 57(5):513–521Google Scholar
  27. 27.
    Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW, Chen YF (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide null mouse. Hypertension 42(1):88–95CrossRefPubMedGoogle Scholar
  28. 28.
    Dong F, Abhijit T, Jiwon L, Zamaneh K (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogen Tissue Rep 5(1):15CrossRefGoogle Scholar
  29. 29.
    Agocha AE, Eghbali-Webb M (1997) A simple method for preparation of cultured cardiac fibroblasts from adult human ventricular tissue. Mol Cell Biochem 172(1–2):195–198CrossRefPubMedGoogle Scholar
  30. 30.
    Cell applications (.1994-2017) Rat cardiac fibroblasts: RCF. Accessed 11 Feb 2017
  31. 31.
    Chen X, O’Connell TD, Xiang YK (2016) With or without langendorff: a new method for adult myocyte isolation to be tested with time. Circ Res 119(8):888–890CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seluanov A, Vaidya A, Gorbunova V (2010) Establishing primary adult fibroblast cultures from rodents. J Vis Exp 5(44).
  33. 33.
    Jonsson MKB, Hartman RJG, Ackers-Johnson M, Tan WLW, Lim B, van Veen TAB, Foo RS (2016) A transcriptomic and epigenomic comparison of fetal and adult human cardiac fibroblasts reveals novel key transcription factors in adult cardiac fibroblasts. JACC Basic Transl Sci 1(7):590–602CrossRefGoogle Scholar
  34. 34.
    Wu HY, Opperman K, Kaboord B (2014) An improve method for highly efficient isolation of primary mouse embryonic fibroblasts. .Thermo Fisher Scientific. Accessed 22 Feb 2017
  35. 35.
    Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine, School of MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.Escuela de MedicinaUniversidad PanamericanaMéxico, Cuidad de MéxicoMexico

Personalised recommendations