In Vivo Imaging of the Mouse Reproductive Organs, Embryo Transfer, and Oviduct Cilia Dynamics Using Optical Coherence Tomography

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)

Abstract

The oviduct (or fallopian tube) serves as the site where a number of major reproductive events occur for the start of a new life in mammals. Understanding the oviduct physiology is essential to uncover hidden mechanisms of the human reproduction and its disorders, yet the current analysis of the oviduct that is largely limited to in vitro imaging is a significant technical hurdle. To overcome this barrier, we have recently developed in vivo approaches based on optical coherence tomography for structural and functional imaging of the mouse oviduct. In this chapter, we describe the details of such live imaging methods that allow for three-dimensional visualization of the oviduct wall morphology, microscale mapping of the oviduct cilia beat frequency, and high-resolution observation of the cumulus–oocyte complex at the cellular level. We expect this set of imaging tools will enable novel studies toward a comprehensive knowledge of the mammalian reproduction.

Key words

Mouse Oviduct Mammalian Reproduction In Vivo Imaging Optical Coherence Tomography Cumulus–Oocyte Complex Motile Cilia Cilia Beat Frequency 

Notes

Acknowledgments

This work was supported by the National Institute of Health grant R01HL120140 (I.V.L.) and the American Heart Association grant 16POST30990070 (S.W.).

References

  1. 1.
    Coy P, García-Vázquez FA, Visconti PE, Avilés M (2012) Roles of the oviduct in mammalian fertilization. Reproduction 144(6):649–660. https://doi.org/10.1530/rep-12-0279 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li S, Winuthayanon W (2017) Oviduct: roles in fertilization and early embryo development. J Endocrinol 232(1):R1–R26. https://doi.org/10.1530/joe-16-0302 CrossRefPubMedGoogle Scholar
  3. 3.
    Besenfelder U, Havlicek V, Brem G (2012) Role of the oviduct in early embryo development. Reprod Domest Anim 47(Suppl 4):156–163. https://doi.org/10.1111/j.1439-0531.2012.02070.x CrossRefPubMedGoogle Scholar
  4. 4.
    Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human fallopian tube cilia. Hum Reprod Update 12(4):363–372. https://doi.org/10.1093/humupd/dml012 CrossRefPubMedGoogle Scholar
  5. 5.
    Abe H, Oikawa T (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235(3):399–410. https://doi.org/10.1002/ar.1092350309 CrossRefPubMedGoogle Scholar
  6. 6.
    Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71(4):444–452. https://doi.org/10.1002/mrd.20312 CrossRefPubMedGoogle Scholar
  7. 7.
    Bylander A, Nutu M, Wellander R, Goksör M, Billig H, Larsson DJ (2010) Rapid effects of progesterone on ciliary beat frequency in the mouse fallopian tube. Reprod Biol Endocrinol 8(1):1–8. https://doi.org/10.1186/1477-7827-8-48 CrossRefGoogle Scholar
  8. 8.
    Burton JC, Wang S, Stewart CA, Behringer RR, Larina IV (2015) High-resolution three-dimensional in vivo imaging of mouse oviduct using optical coherence tomography. Biomed Opt Express 6(7):2713–2723. https://doi.org/10.1364/BOE.6.002713 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang S, Burton JC, Behringer RR, Larina IV (2015) In vivo micro-scale tomography of ciliary behavior in the mammalian oviduct. Sci Rep 5:13216. https://doi.org/10.1038/srep13216. http://www.nature.com/articles/srep13216#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography—principles and applications. Rep Prog Phys 66(2):239CrossRefGoogle Scholar
  11. 11.
    Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography. J Biomed Opt 4(1):95–105. https://doi.org/10.1117/1.429925 CrossRefPubMedGoogle Scholar
  12. 12.
    Cho A, Haruyama N, Kulkarni AB (2009) Generation of transgenic mice. In: Juan S. Bonifacino et al (eds) Current protocols in cell biology. Chapter19:Unit 19.11. John Willey & Sons, Inc., New Jersey. doi:https://doi.org/10.1002/0471143030.cb1911s42
  13. 13.
    Ploutarchou P, Melo P, Day AJ, Milner CM, Williams SA (2015) Molecular analysis of the cumulus matrix: insights from mice with O-glycan-deficient oocytes. Reproduction 149(5):533–543. https://doi.org/10.1530/REP-14-0503 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oldenburg AL, Chhetri RK, Hill DB, Button B (2012) Monitoring airway mucus flow and ciliary activity with optical coherence tomography. Biomed Opt Express 3(9):1978–1992. https://doi.org/10.1364/boe.3.001978 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang S, Burton JC, Behringer RR, Larina IV (2016) Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo. Proc SPIE 9689:96893R-96895Google Scholar
  16. 16.
    Caligioni C (2009) Assessing reproductive status/stages in mice. In: Jacqueline N. Crawley et al (eds) Current protocols in neuroscience. Appendix:Appendix-4I. John Willey & Sons, Inc., New Jersey. doi:https://doi.org/10.1002/0471142301.nsa04is48

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA

Personalised recommendations