Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture

  • Andrew L. LopezIII
  • Irina V. Larina
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)


The heart is a dynamic organ that quickly undergoes morphological and mechanical changes through early embryonic development. Characterizing these early moments is important for our understanding of proper embryonic development and the treatment of heart disease. Traditionally, tomographic imaging modalities and fluorescence-based microscopy are excellent approaches to visualize structural features and gene expression patterns, respectively, and connect aberrant gene programs to pathological phenotypes. However, these approaches usually require static samples or fluorescent markers, which can limit how much information we can derive from the dynamic and mechanical changes that regulate heart development. Optical coherence tomography (OCT) is unique in this circumstance because it allows for the acquisition of three-dimensional structural and four-dimensional (3D + time) functional images of living mouse embryos without fixation or contrast reagents. In this chapter, we focus on how OCT can visualize heart morphology at different stages of development and provide cardiodynamic information to reveal mechanical properties of the developing heart.

Key words

Optical coherence tomography Cardiovascular development Embryo culture Heart morphogenesis Cardiodynamic analysis Mouse Live imaging 



This work is supported by the National Institute of Health with grants R01HL120140, U54HG006348, R01HD086765, and T32HL07676, and by the Optical Imaging and Vital Microscopy Core at Baylor College of Medicine.


  1. 1.
    Lopez AL III, Wang S, Larin KV, Overbeek PA, Larina IV (2015) Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. J Biomed Opt 20:90501CrossRefGoogle Scholar
  2. 2.
    Wang S, Garcia MD, Lopez AL, Overbeek PA, Larin KV et al (2017) Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. Biomed Opt Express 8:407–419CrossRefPubMedGoogle Scholar
  3. 3.
    Wang S, Lakomy DS, Garcia MD, Lopez AL III, Larin KV et al (2016) Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. J Biophotonics 9:837–847CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Liu A, Wang R, Thornburg KL, Rugonyi S (2009) Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. J Biomed Opt 14:044020CrossRefPubMedGoogle Scholar
  5. 5.
    Jenkins MW, Rothenberg F, Roy D, Nikolski VP, Hu Z et al (2006) 4D embryonic cardiography using gated optical coherence tomography. Opt Express 14:736–748CrossRefPubMedGoogle Scholar
  6. 6.
    Jenkins MW, Chughtai OQ, Basavanhally AN, Watanabe M, Rollins AM (2007) In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. J Biomed Opt 12:030505CrossRefPubMedGoogle Scholar
  7. 7.
    Mariampillai A, Standish BA, Munce NR, Randall C, Liu G et al (2007) Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt Express 15:1627–1638CrossRefPubMedGoogle Scholar
  8. 8.
    Larin KV, Larina IV, Liebling M, Dickinson ME (2009) Live imaging of early developmental processes in mammalian embryos with optical coherence tomography. J Innov Opt Health Sci 2:253–259CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gargesha M, Jenkins MW, Wilson DL, Rollins AM (2009) High temporal resolution OCT using image-based retrospective gating. Opt Express 17:10786–10799CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liebling M, Forouhar AS, Gharib M, Fraser SE, Dickinson ME (2005) Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. J Biomed Opt 10:054001CrossRefPubMedGoogle Scholar
  11. 11.
    Sudheendran N, Syed SH, Dickinson ME, Larina IV, Larin KV (2011) Speckle variance OCT imaging of the vasculature in live mammalian embryos. Laser Phys Lett 8:247–252CrossRefGoogle Scholar
  12. 12.
    Mariampillai A, Leung MK, Jarvi M, Standish BA, Lee K et al (2010) Optimized speckle variance OCT imaging of microvasculature. Opt Lett 35:1257–1259CrossRefPubMedGoogle Scholar
  13. 13.
    Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A et al (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22:1119–1121CrossRefPubMedGoogle Scholar
  14. 14.
    Vakoc B, Yun S, de Boer J, Tearney G, Bouma B (2005) Phase-resolved optical frequency domain imaging. Opt Express 13:5483–5493CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Larina IV, Sudheendran N, Ghosn M, Jiang J, Cable A et al (2008) Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. J Biomed Opt 13:060506CrossRefPubMedGoogle Scholar
  16. 16.
    Larina IV, Ivers S, Syed S, Dickinson ME, Larin KV (2009) Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. Opt Lett 34:986–988CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jones EA, Baron MH, Fraser SE, Dickinson ME (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 287:H1561–H1569CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA

Personalised recommendations