Advertisement

In Vivo Evaluation of the Cardiovascular System of Mouse Embryo and Fetus Using High Frequency Ultrasound

  • Yu-Qing Zhou
  • Lindsay S. Cahill
  • John G. Sled
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)

Abstract

Genetically engineered mice have been widely used for studying cardiovascular development, physiology and diseases. In the past decade, high frequency ultrasound imaging technology has been significantly advanced and applied to observe the cardiovascular structure, function, and blood flow dynamics with high spatial and temporal resolution in mice. This noninvasive imaging approach has made possible longitudinal studies of the mouse embryo/fetus in utero. In this chapter, we describe detailed methods for: (1) the assessment of the structure, function, and flow dynamics of the developing heart of the mouse embryo during middle gestation (E10.5–E13.5); and (2) the measurement of flow distribution throughout the circulatory system of the mouse fetus at late gestation (E17.5). With the described protocols, we are able to illustrate the main cardiovascular structures and the corresponding functional and flow dynamic events at each stage of development, and generate baseline physiological information about the normal mouse embryo/fetus. These data will serve as the reference material for the identification of cardiovascular abnormalities in numerous mouse models with targeted genetic manipulations.

Key words

Mouse Embryo Fetus Ultrasound Doppler Heart Vessel Flow Function 

Notes

Acknowledgment

This work was supported by the Canadian Institutes of Health Research Grant MOP231389.

References

  1. 1.
    Kaufman MH (1992) The atlas of mouse development. Academic, New York, NYGoogle Scholar
  2. 2.
    Savolainen SM, Foley JF, Elmore SA (2009) Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5. Toxicol Pathol 37:395–414CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bruneau BG (2003) The developing heart and congenital heart defects: a make or break situation. Clin Genet 63:252–261CrossRefPubMedGoogle Scholar
  4. 4.
    Teichert AM, Scott JA, Robb GB, Zhou YQ, Zhu SN, Lem M, Keightley A, Steer BM, Schuh AC, Adamson SL, Cybulsky MI, Marsden PA (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 103:24–33CrossRefPubMedGoogle Scholar
  5. 5.
    Conway SJ, Kruzynska-Frejtag A, Kneer PL, Machnicki M, Koushik SV (2003) What cardiovascular defect does my prenatal mouse mutant have, and why? Genesis 35:1–21CrossRefPubMedGoogle Scholar
  6. 6.
    Cahill LS, Zhou YQ, Seed M, Macgowan CK, Sled JG (2014) Brain sparing in fetal mice: BOLD MRI and Doppler ultrasound show blood redistribution during hypoxia. J Cereb Blood Flow Metab 34:1082–1088CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120:817–824CrossRefPubMedGoogle Scholar
  8. 8.
    Reuss ML, Rudolph AM (1980) Distribution and recirculation of umbilical and systemic venous blood flow in fetal lambs during hypoxia. J Dev Physiol 2:71–84PubMedGoogle Scholar
  9. 9.
    Di Renzo GC, Luzi G, Cucchia GC, Caserta G, Fusaro P, Perdikaris A, Cosmi EV (1992) The role of Doppler technology in the evaluation of fetal hypoxia. Early Hum Dev 29:259–267CrossRefPubMedGoogle Scholar
  10. 10.
    Kiserud T, Kessler J, Ebbing C, Rasmussen S (2006) Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol 28:143–149CrossRefPubMedGoogle Scholar
  11. 11.
    Kulandavelu S, Whiteley KJ, Bainbridge SA, Qu D, Adamson SL (2013) Endothelial NO synthase augments fetoplacental blood flow, placental vascularization, and fetal growth in mice. Hypertension 61:259–266CrossRefPubMedGoogle Scholar
  12. 12.
    Kusinski LC, Stanley JL, Dilworth MR, Hirt CJ, Andersson IJ, Renshall LJ, Baker BC, Baker PN, Sibley CP, Wareing M, Glazier JD (2012) eNOS knockout mouse as a model of fetal growth restriction with an impaired uterine artery function and placental transport phenotype. Am J Physiol Regul Integr Comp Physiol 303:R86–R93CrossRefPubMedGoogle Scholar
  13. 13.
    Patterson AJ, Zhang L (2010) Hypoxia and fetal heart development. Curr Mol Med 10:653–666CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ream MA, Chandra R, Peavey M, Ray AM, Roffler-Tarlov S, Kim HG, Wetsel WC, Rockman HA, Chikaraishi DM (2008) High oxygen prevents fetal lethality due to lack of catecholamines. Am J Physiol Regul Integr Comp Physiol 295:R942–R953CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seller MJ, Bnait KS (1995) Effects of tobacco smoke inhalation on the developing mouse embryo and fetus. Reprod Toxicol 9:449–459CrossRefPubMedGoogle Scholar
  16. 16.
    Momoi N, Tinney JP, Liu LJ, Elshershari H, Hoffmann PJ, Ralphe JC, Keller BB, Tobita K (2008) Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 294:H2248–H2256CrossRefPubMedGoogle Scholar
  17. 17.
    Bake S, Tingling JD, Miranda RC (2012) Ethanol exposure during pregnancy persistently attenuates cranially directed blood flow in the developing fetus: evidence from ultrasound imaging in a murine second trimester equivalent model. Alcohol Clin Exp Res 36:748–758CrossRefPubMedGoogle Scholar
  18. 18.
    Srinivasan S, Baldwin HS, Aristizabal O, Kwee L, Labow M, Artman M, Turnbull DH (1998) Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98:912–918CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou YQ, Foster FS, Qu DW, Zhang M, Harasiewicz KA, Adamson SL (2002) Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics 10:113–126CrossRefPubMedGoogle Scholar
  20. 20.
    Phoon CK, Ji RP, Aristizábal O, Worrad DM, Zhou B, Baldwin HS, Turnbull DH (2004) Embryonic heart failure in NFATc1−/− mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 95:92–99CrossRefPubMedGoogle Scholar
  21. 21.
    Spurney CF, Lo CW, Leatherbury L (2006) Fetal mouse imaging using echocardiography: a review of current technology. Echocardiography 23:891–899CrossRefPubMedGoogle Scholar
  22. 22.
    Hernandez-Andrade E, Ahn H, Szalai G, Korzeniewski SJ, Wang B, King M, Chaiworapongsa T, Than NG, Romero R (2014) Evaluation of utero-placental and fetal hemodynamic parameters throughout gestation in pregnant mice using high-frequency ultrasound. Ultrasound Med Biol 40:351–360CrossRefPubMedGoogle Scholar
  23. 23.
    Foster FS, Mehi J, Lukacs M, Hirson D, White C, Chaggares C, Needles A (2009) A new 15–50MHz array-based micro-ultrasound scanner for preclinical imaging. Ultrasound Med Biol 35:1700–1708CrossRefPubMedGoogle Scholar
  24. 24.
    Zhou YQ, Cahill LS, Wong MD, Seed M, Macgowan CK, Sled JG (2014) Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound. Physiol Genomics 46:602–614CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou YQ, Foster FS, Parkes R, Adamson SL (2003) Developmental changes in left and right ventricular diastolic filling patterns in mice. Am J Physiol Heart Circ Physiol 285:H1563–H1575CrossRefPubMedGoogle Scholar
  26. 26.
    Yu Q, Shen Y, Chatterjee B, Siegfried BH, Leatherbury L, Rosenthal J, Lucas JF, Wessels A, Spurney CF, Wu YJ, Kirby ML, Svenson K, Lo CW (2004) ENU induced mutations causing congenital cardiovascular anomalies. Development 131:6211–6223CrossRefPubMedGoogle Scholar
  27. 27.
    Ji RP, Phoon CK (2005) Noninvasive localization of nuclear factor of activated T cells c1−/− mouse embryos by ultrasound biomicroscopy-Doppler allows genotype-phenotype correlation. J Am Soc Echocardiogr 18:1415–1421CrossRefPubMedGoogle Scholar
  28. 28.
    Le Floc’h J, Chérin E, Zhang MY, Akirav C, Adamson SL, Vray D, Foster FS (2004) Developmental changes in integrated ultrasound backscatter from embryonic blood in vivo in mice at high US frequency. Ultrasound Med Biol 30:1307–1319CrossRefPubMedGoogle Scholar
  29. 29.
    Hecher K, Campbell S, Doyle P, Harrington K, Nicolaides K (1995) Assessment of fetal compromise by Doppler ultrasound investigation of the fetal circulation. Arterial, intracardiac, and venous blood flow velocity studies. Circulation 91:129–138CrossRefPubMedGoogle Scholar
  30. 30.
    Tchirikov M, Eisermann K, Rybakowski C, Schröder HJ (1998) Doppler ultrasound evaluation of ductus venosus blood flow during acute hypoxemia in fetal lambs. Ultrasound Obstet Gynecol 11:426–431CrossRefPubMedGoogle Scholar
  31. 31.
    Vimpeli T, Huhtala H, Wilsgaard T, Acharya G (2009) Fetal cardiac output and its distribution to the placenta at 11–20 weeks of gestation. Ultrasound Obstet Gynecol 33:265–271CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Qing Zhou
    • 1
    • 2
    • 3
  • Lindsay S. Cahill
    • 1
  • John G. Sled
    • 1
    • 4
  1. 1.Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Translational Biology & Engineering ProgramTed Rogers Centre for Heart ResearchTorontoCanada
  3. 3.Institute of Biomaterial & Biomedical EngineeringUniversity of TorontoTorontoCanada
  4. 4.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations