Genome Editing During Development Using the CRISPR-Cas Technology

  • Rodrigo G. Arzate-Mejía
  • Paula Licona-Limón
  • Félix Recillas-Targa
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)

Abstract

Over the years, the study of gene function during development involved the implementation of sophisticated transgenic strategies to visualize how organisms change during their lifetime. These strategies are diverse and extremely useful and allowed the discovery of some of the fundamental mechanisms governing organism’s development. Such strategies can be time-consuming, in some cases expensive, and require complex infrastructure. With the advent of the genome editing CRISPR-Cas9 RNA-guided DNA endonuclease system a tremendous progress has been achieved in manipulating diverse organisms and cell types. In recent years this system has contributed importantly to the design of novel experimental strategies to further understand developmental processes, to generate genetically modified animal models, and develop disease models. Here we highlight examples in which the genome editing CRISPR-Cas9 system has been employed to understand the mechanisms controlling embryonic development and disease.

Key words

Genome editing ZFN TALEN CRISPR-Cas6 Development Disease DNA repair iPSC ESC Chromatin 

Notes

Acknowledgments

This work was supported by the DGAPA-PAPIIT, UNAM (IN209403, IN203811, and IN201114), CONACyT (42653-Q, 128464, and 220503) and Fronteras de la Ciencia-2015 (Grant 290) to FR-T. DGAPA-PAPIIT, UNAM (IA202116) and CONACyT (CB-2015-01-255287, S0008-2015-2-261227, and INFR-2017-01-280464) to PL-L. RGA-M is doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and is recipient of the fellowship 317534 and 25590 (Fronteras) from CONACyT.

References

  1. 1.
    Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jaenisch R, Mintz B (1974) Simina virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71:1250–1254CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Recillas-Targa F, Valadez-Graham V, Farrell CM (2004) Prospects and implications of using chromatin insulators in gene therapy and transgenesis. BioEssays 26:796–807CrossRefPubMedGoogle Scholar
  4. 4.
    Wolffe E (2016) Corporate profile: Sangamo BioSciences, Inc. Regen Med 11:375–379CrossRefPubMedGoogle Scholar
  5. 5.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646CrossRefPubMedGoogle Scholar
  6. 6.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148CrossRefPubMedGoogle Scholar
  8. 8.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-stranded breaks with TAL effector nucleases. Genetics 186:757–761CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mojica FJM, Montoliu L (2016) On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 24:811–820CrossRefPubMedGoogle Scholar
  11. 11.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier R (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  12. 12.
    Gasiunas G, Barrangou R, Horvathe P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sapranauska R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282CrossRefGoogle Scholar
  14. 14.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588CrossRefPubMedGoogle Scholar
  16. 16.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Daden D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, Kramer A, Martens A, Edwards JR, Challen GA (2016) Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 5:866–874CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Raddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kearns NA, Pham H, Tbak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–403CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dreissig S, Schiml S, Schindele P, Weiss O, Rutten T, Schubert V, Galdilin E, Mette MF, Puchta H, Houden A (2017) Live cell CRISPR-imaging in plants reveals dynamic telomere movements. Plan J 91(4):565–573CrossRefGoogle Scholar
  23. 23.
    Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36CrossRefPubMedGoogle Scholar
  24. 24.
    Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J (2014) A CRISPR view of development. Genes Dev 28:1859–1872CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L, Gurumurthy CB (2014) Mouse genome editing using the CRISPR/Cas system. Curr Prot Hum Genet 15(7):1–15.7.27Google Scholar
  26. 26.
    Seruggia D, Montoliu L (2014) The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alterations in animals. Transgenic Res 23:707–716CrossRefPubMedGoogle Scholar
  27. 27.
    Paquet D, Kwart D, Chen A, Sproul A, Jacob S et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129CrossRefPubMedGoogle Scholar
  28. 28.
    Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, Swinton PG, Martin JF, Behringer RR (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393:3–9CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu LP, Yang Z, Mao D, Sun L et al (2013) Optimized gene editing technology for Drosophila melanogaster using germ lines-specific Cas9. Proc Natl Acad Sci U S A 110:13904–13909CrossRefGoogle Scholar
  30. 30.
    Canver MC, Smith EC, Sher F, Pinello L, Sanajan NE et al (2015) BCL11A enhancer dissection by Cas9-mediates in situ saturating mutagenesis. Nature 527:192–197CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu Q, Powles RL, Wang Q, He BJ, Zhao H (2016) Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet 12:e1005947CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC et al (2016) Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533:95–99CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dever DP, RO BK, Reinisch A, Camarena J, Washington G et al (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384–389CrossRefPubMedGoogle Scholar
  34. 34.
    Bengtsson N, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Houschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rogers W, Goyal Y, Yamaya K, Schvartsman SY, Levine MS (2017) Uncoupling neurogenic gene networks in the Drosophila embryo. Genes Dev 31:634–638CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains results in disease. Trends Genet 32:225–237CrossRefPubMedGoogle Scholar
  37. 37.
    Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678CrossRefPubMedGoogle Scholar
  38. 38.
    Hnisz D, Weintraub AS, Day DS, Valton A-L, Bak RO et al (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454–1458CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lupiánez DG, Kraft K, Heindrich V, Krawitz P, Broncati F et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  41. 41.
    Hockermeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell 18:573–586Google Scholar
  42. 42.
    Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668CrossRefPubMedGoogle Scholar
  43. 43.
    Fink JJ, Robinson TM, Germain ND, Sirois CL, Bolduc KA, Ward AJ, Rigo F, Chamberlain SJ, Levines ES (2017) Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells. Nat Commun 8:15038CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM et al (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23:570–577CrossRefPubMedGoogle Scholar
  45. 45.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ et al (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Provasi E, Genovese O, Lombardo A, Magnani Z, Liu PQ et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral transfer. Nat Med 18:807–815CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3:2510CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P et al (2017) A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49:193–203CrossRefPubMedGoogle Scholar
  50. 50.
    Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM et al (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–163CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moyo B, Bloom K, Scott T, Ely A, Arbuthnot P (2017) Advances with CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus. Virus Res pii:S0168–1702(16)30733-XGoogle Scholar
  52. 52.
    Ma H, Dang Y, Wu Y, Jia G, Anaya E et al (2015) A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep 12:673–683CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM et al (2016) Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep 16:232–246CrossRefPubMedGoogle Scholar
  55. 55.
    Orchard RC, Wilen CB, Doench JG, Baldridge MT, McCune BT et al (2016) Discovery of a proteinaceous cellular receptor for a norovirus. Science 353:933–936CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Haga K, Fujimoto A, Takai-Todaka R, Miki M, Doan YH et al (2016) Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci U S A 113:E6248–E6255CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Puschnik AS, Majzoub K, Ooi YS, Carette JE (2017) A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 15:351–364CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang J, Quake SR (2014) RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci U S A 111:13157–13162CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ye L, Wang J, Beyer AI, Teque F, Cradick TJ et al (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 111:9591–9596CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M et al (2015) CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 112:13982–13987CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR et al (2014) Rapid modeling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA et al (2015) Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modeling. Nat Commun 6:7391CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C et al (2015) Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29:1576–1585CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J et al (2016) Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30:1470–1480CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Eyquem J, Mansilla-Soto J, Glavridis T, van der Stegen SJ, Hamieh M et al (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–117CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–407CrossRefPubMedGoogle Scholar
  70. 70.
    Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–411CrossRefPubMedGoogle Scholar
  71. 71.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–403CrossRefPubMedGoogle Scholar
  72. 72.
    Wu Y, Zhou H, Fan X, Zhang Y, Zhang M et al (2015) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25:67–79CrossRefPubMedGoogle Scholar
  73. 73.
    Wu Y, Liang D, Wang Y, Bai M, Tang W et al (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662CrossRefPubMedGoogle Scholar
  74. 74.
    Yin H, Xue W, Chen S, Bogorad RL, Benedetti E et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotech 32:551–553CrossRefGoogle Scholar
  75. 75.
    Park CY, Kim DH, Son JS, Sung JJ, Lee J et al (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17:213–220CrossRefPubMedGoogle Scholar
  76. 76.
    Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658CrossRefPubMedGoogle Scholar
  77. 77.
    Zhuo C, Hou W, Hu L, Lin C, Chen C et al (2017) Genomic editing of non-coding RNA genes with CRISPR/Cas9 ushers in a potential novel approach to study and treat Schizophrenia. Front Mol Neurosci 10:28PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gerace D, Martiniello-Wilks R, Nassif NT, Lal S, Steptoe R et al (2017) CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success? Stem Cell Res Ther 8:62CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683CrossRefPubMedGoogle Scholar
  80. 80.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88CrossRefPubMedGoogle Scholar
  81. 81.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Nakade S, Tsubota T, Skane Y, Kume S, Sakamoto N et al (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Susuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149CrossRefGoogle Scholar
  84. 84.
    Baltimore D, Berg P, Botchan M, Carroll D, Alta Caro R et al (2015) A prudent path forward for genomic engineering and germline gene modification. Science 348:36–38CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rodrigo G. Arzate-Mejía
    • 1
  • Paula Licona-Limón
    • 2
  • Félix Recillas-Targa
    • 1
  1. 1.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations