Chromatin Immunoprecipitation in Early Mouse Embryos

  • Estela G. García-González
  • Bladimir Roque-Ramirez
  • Carlos Palma-Flores
  • J. Manuel Hernández-Hernández
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1752)

Abstract

Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

Key words

Chromatin immunoprecipitation Embryo Gene regulation Epigenetics Myogenesis Somites MyoD Myogenin 

References

  1. 1.
    Koster MJE, Snel B, Timmers HTM (2015) Genesis of chromatin and transcription dynamics in the origin of species. Cell 161(4):724–736CrossRefPubMedGoogle Scholar
  2. 2.
    Bartholomew B (2014) Regulating the chromatin landscape: structural and mechanistic perspectives. Annu Rev Biochem 83:671–696CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O'Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet Jul 38(7):835–841CrossRefGoogle Scholar
  5. 5.
    Gilfillan GD, Hughes T, Sheng Y, Hjorthaug HS, Straub T, Gervin K et al (2012) Limitations and possibilities of low cell number chip-seq. BMC Genomics 13:645CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu X, Wang C, Liu W, Li J, Li C, Kou X et al (2016) Distinct features of h3k4me3 and h3k27me3 chromatin domains in pre-implantation embryos. Nature 537(7621):558–562CrossRefPubMedGoogle Scholar
  7. 7.
    Tortelote GG, Hernández-Hernández JM, Quaresma AJC, Nickerson JA, Imbalzano AN, Rivera-Pérez JA (2013) Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice. Dev Biol 374(1):164–173CrossRefPubMedGoogle Scholar
  8. 8.
    Dahl JA, Collas P (2009) MicroChIP: chromatin immunoprecipitation for small cell numbers. Methods Mol Biol 567:59–74CrossRefPubMedGoogle Scholar
  9. 9.
    Dahl JA, Collas P (2008) MicroChIP-a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res 36(3):e15CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hernández-Hernández JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN (2013) The scaffold attachment factor b1 (safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res Jun 41(11):5704–5716CrossRefGoogle Scholar
  11. 11.
    Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28(3):225–238CrossRefPubMedGoogle Scholar
  12. 12.
    Cho OH, Mallappa C, Hernández-Hernández JM, Rivera-Pérez JA, Imbalzano AN (2015) Contrasting roles for myod in organizing myogenic promoter structures during embryonic skeletal muscle development. Dev Dyn Jan 244(1):43–55CrossRefGoogle Scholar
  13. 13.
    Musumeci G, Castrogiovanni P, Coleman R, Szychlinska MA, Salvatorelli L, Parenti R et al (2015) Somitogenesis: From somite to skeletal muscle. Acta Histochem 117(4–5):313–328CrossRefPubMedGoogle Scholar
  14. 14.
    Pourquié O (2001) Vertebrate somitogenesis. Annu Rev Cell Dev Biol 17:311–350CrossRefPubMedGoogle Scholar
  15. 15.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Estela G. García-González
    • 2
  • Bladimir Roque-Ramirez
    • 2
  • Carlos Palma-Flores
    • 2
    • 3
  • J. Manuel Hernández-Hernández
    • 1
    • 2
  1. 1.Unidad de Investigación Médica en Genética HumanaHospital de PediatríaColonia DoctoresMexico
  2. 2.Sociedad Mexicana de Epigenética y Medicina Regenerativa, A.C.Ciudad de MéxicoMexico
  3. 3.Cátedra CONACYT-Instituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations