Advertisement

An In Vitro System to Study the Mesenchymal-to-Amoeboid Transition

  • Aleksandra S. Chikina
  • Antonina Y. Alexandrova
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

During the last few years, significant attention has been given to the plasticity of cell migration, i.e., the ability of individual cell to switch between different motility modes, in particular between mesenchymal and amoeboid motilities. This phenomenon is called the mesenchymal-to-amoeboid transition (MAT). Such a plasticity of cell migration is a mechanism, by which cancer cells can adapt their migration mode to different microenvironments and thus it may promote tumor dissemination. It was shown that interventions at certain regulatory points of mesenchymal motility as well as alterations of environmental conditions can trigger MAT. One of the approaches to induce MAT is to mechanically confine cells and one of the simplest ways to achieve this is to cultivate cells under agarose. This method does not require any special tool, is easily reproducible and allows cell tracking by videomicroscopy. We describe here a protocol, where MAT is associated with chemotaxis.

Key words

Mesenchymal-to-amoeboid transition Lamellipodia Bleb Confined conditions Ultrapure agarose 

Abbreviations

ECM

Extracellular matrix

MAT

Mesenchymal-to-amoeboid transition

MMPs

Matrix metalloproteinases.

Notes

Acknowledgment

This work was supported by the Russian Science Foundation (Grant 16-15-10288).

References

  1. 1.
    Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRefPubMedGoogle Scholar
  3. 3.
    Svitkina TM (2013) Ultrastructure of protrusive actin filament arrays. Curr Opin Cell Biol 25:574–581CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vicente-Manzanares M, Choi C, Horwitz AR (2009) Integrins in cell migration – the actin connection. J Cell Sci 122:199–206CrossRefPubMedGoogle Scholar
  5. 5.
    Enterline HT, Cohen DR (1950) The ameboid motility of human and animal neoplastic cells. Cancer 3:1033–1038CrossRefPubMedGoogle Scholar
  6. 6.
    Wolf K, Mazo I, Leung H et al (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374CrossRefPubMedGoogle Scholar
  8. 8.
    Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Panková K, Rösel D, Novotný M, Brábek J (2010) The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 67:63–71CrossRefPubMedGoogle Scholar
  10. 10.
    Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582–590CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lämmermann T, Sixt M (2009) Mechanical modes of “amoeboid” cell migration. Curr Opin Cell Biol 21:636–644CrossRefPubMedGoogle Scholar
  12. 12.
    Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719CrossRefPubMedGoogle Scholar
  13. 13.
    Carragher NO, Walker SM, Scott Carragher LA et al (2006) Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25:5726–5740CrossRefPubMedGoogle Scholar
  14. 14.
    Van Goethem E, Poincloux R, Gauffre F et al (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184:1049–1061CrossRefPubMedGoogle Scholar
  15. 15.
    Ehrbar M, Sala A, Lienemann P et al (2011) Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 100:284–293CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci U S A 109:14434–14439CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu Y-J, Le Berre M, Lautenschlaeger F et al (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–672CrossRefPubMedGoogle Scholar
  18. 18.
    Gao Y, Wang Z, Hao Q et al (2017) Loss of ERα induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat Commun 8:14483CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Derivery E, Fink J, Martin D et al (2008) Free Brick1 is a trimeric precursor in the assembly of a functional Wave complex. PLoS One 3:e2462CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Beckham Y, Vasquez RJ, Stricker J et al (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS One 9:e100943CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sabeh F, Shimizu-Hirota R, Weiss SJ (2009) Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol 185:11–19CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Parri M, Taddei ML, Bianchini F et al (2009) EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 69:2072–2081CrossRefPubMedGoogle Scholar
  23. 23.
    Kosla J, Paňková D, Plachý J et al (2013) Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun Signal 11:51CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taddei ML, Giannoni E, Morandi A et al (2014) Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun Signal 12:24CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Koch B, Meyer AK, Helbig L et al (2015) Dimensionality of rolled-up nanomembranes controls neural stem cell migration mechanism. Nano Lett 15:5530–5538CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Haeger A, Krause M, Wolf K, Friedl P (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840:2386–2395CrossRefPubMedGoogle Scholar
  27. 27.
    Heit B, Kubes P (2003) Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci STKE 2003:PL5PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Aleksandra S. Chikina
    • 1
    • 2
  • Antonina Y. Alexandrova
    • 1
  1. 1.Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research CenterMoscowRussian Federation
  2. 2.CNRS UMR144/Institut CurieParisFrance

Personalised recommendations