Advertisement

Cell Migration pp 387-399 | Cite as

Controlling Confinement and Topology to Study Collective Cell Behaviors

  • Guillaume Duclos
  • Maxime Deforet
  • Hannah G. Yevick
  • Olivier Cochet-Escartin
  • Flora Ascione
  • Sarah Moitrier
  • Trinish Sarkar
  • Victor Yashunsky
  • Isabelle Bonnet
  • Axel Buguin
  • Pascal SilberzanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Confinement and substrate topology strongly affect the behavior of cell populations and, in particular, their collective migration. In vitro experiments dealing with these aspects require strategies of surface patterning that remain effective over long times (typically several days) and ways to control the surface topology in three dimensions. Here, we describe protocols addressing these two aspects. High-resolution patterning of a robust cell-repellent coating is achieved by etching the coating through a photoresist mask patterned directly on the coated surface. Out-of-plane curvature can be controlled using glass wires or corrugated “wavy” surfaces.

Key words

Collective cell migration Microfabrication Surface patterning Out-of-plane curvature Positive curvature Negative curvature 

Notes

Acknowledgments

We gratefully acknowledge financial support from the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC) Ile-de-France, the Région Ile-de-France Domaine d’Intérêt Majeur (DIM) Nano-K, the Association pour la Recherche sur le Cancer (ARC), the EU cofund PRESTIGE post-doc program, the EU cofund IC-3i PhD program, and the Fondation Pierre-Gilles de Gennes. The “Biology-inspired Physics at MesoScales” group is a member of the CelTisPhyBio Labex and of the Institut Pierre-Gilles de Gennes. It is a pleasure to thank Mohamed El Beheiry for his help in the 3D processing of our images.

References

  1. 1.
    Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rørth P (2012) Fellow travellers: emergent properties of collective cell migration. EMBO Rep 13:984–991CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hakim V, Silberzan P (2017) Collective cell migration: a physics perspective. Rep Prog Phys 80(7):076601CrossRefPubMedGoogle Scholar
  4. 4.
    Gov NS (2014) Collective cell migration. In: Kaunas R, Zemel A (eds) Cell and matrix mechanics. CRC Press, Boca Raton, FL, pp 219–238Google Scholar
  5. 5.
    Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital 1:32–43CrossRefGoogle Scholar
  6. 6.
    Vedula SRK, Leong MC, Lai TL et al (2012) Emerging modes of collective cell migration induced by geometrical constraints. Proc Natl Acad Sci U S A 109:12974–12979CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yevick HG, Duclos G, Bonnet I et al (2015) Architecture and migration of an epithelium on a cylindrical wire. Proc Natl Acad Sci 112:5944–5949CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109:9342–9347CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ye M, Sanchez HM, Hultz M et al (2014) Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep 4:4681CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tourovskaia A, Barber T, Wickes BT et al (2003) Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 19:4754–4764CrossRefGoogle Scholar
  11. 11.
    Tourovskaia A, Figueroa-Masot X, Folch A (2006) Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nat Protoc 1:1092–1104CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deforet M, Hakim V, Yevick HG et al (2014) Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat Commun 5:3747CrossRefPubMedGoogle Scholar
  13. 13.
    Nier V, Deforet M, Duclos G et al (2015) Tissue fusion over nonadhering surfaces. Proc Natl Acad Sci 112:9546–9551CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duclos G, Erlenkämper C, Joanny J-F et al (2017) Topological defects in confined populations of spindle-shaped cells. Nat Phys 13:58–62CrossRefGoogle Scholar
  15. 15.
    Azioune A, Carpi N, Tseng Q et al (2010) Protein micropatterns. A direct printing protocol using deep UVs. Methods Cell Biol 97:133–146CrossRefPubMedGoogle Scholar
  16. 16.
    Thery M, Piel M (2014) Scientific protocols – adhesive micropatterns for cells: a microcontact printing protocol. Sci Protoc.  https://doi.org/10.5281/zenodo.13592
  17. 17.
    Azioune A, Storch M, Bornens M et al (2009) Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640–1642CrossRefPubMedGoogle Scholar
  18. 18.
    Duclos G, Garcia S, Yevick HG et al (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10:2346–2353CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Guillaume Duclos
    • 1
  • Maxime Deforet
    • 1
  • Hannah G. Yevick
    • 1
  • Olivier Cochet-Escartin
    • 1
  • Flora Ascione
    • 1
  • Sarah Moitrier
    • 1
  • Trinish Sarkar
    • 1
  • Victor Yashunsky
    • 1
  • Isabelle Bonnet
    • 1
  • Axel Buguin
    • 1
  • Pascal Silberzan
    • 1
    Email author
  1. 1.Laboratoire PhysicoChimie Curie, Institut CuriePSL Research University—Sorbonne Universités, UPMC—CNRS—Equipe labellisée Ligue Contre le CancerParisFrance

Personalised recommendations