Cell Migration pp 361-373 | Cite as

Leukocyte Migration and Deformation in Collagen Gels and Microfabricated Constrictions

  • Pablo J. Sáez
  • Lucie Barbier
  • Rafaele Attia
  • Hawa-Racine Thiam
  • Matthieu Piel
  • Pablo VargasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)


In multicellular organisms, cell migration is a complex process. Examples of this are observed during cell motility in the interstitial space, full of extracellular matrix fibers, or when cells pass through endothelial layers to colonize or exit specific tissues. A common parameter for both situations is the fast adaptation of the cellular shape to their irregular landscape. In this chapter, we describe two methods to study cell migration in complex environments. The first one consists in a multichamber device for the visualization of cell haptotaxis toward the collagen-binding chemokine CCL21. This method is used to study cell migration as well as deformations during directed motility, as in the interstitial space. The second one consists in microfabricated channels connected to small constrictions. This procedure allows the study of cell deformations when single cells migrate through small holes and it is analogous to passage of cells through endothelial layers, resulting in a simplified system to study the mechanisms operating during transvasation. Both methods combined provide a powerful hub for the study of cell plasticity during migration in complex environments.

Key words

Cell deformation Chemokine Chemotaxis Collagen Constriction Cytoskeleton Dendritic cell Haptotaxis Leukocyte Microchannel 



PV was supported by the Association Nationale pour la Recherche (MOTILE project, ANR-16-CE13-0009) and by the Inserm through a permanent research scientist position. This work has received the support of Institut Pierre-Gilles de Gennes (équipement d’excellence, “Investissements d’avenir”, programme ANR-10-EQPX-34).


  1. 1.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. CrossRefPubMedGoogle Scholar
  2. 2.
    Vargas P, Barbier L, Sáez PJ, Piel M (2017) Mechanisms for fast cell migration in complex environments. Curr Opin Cell Biol 48:72–78. CrossRefPubMedGoogle Scholar
  3. 3.
    Worbs T, Hammerschmidt SI, Forster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17(1):30–48. CrossRefPubMedGoogle Scholar
  4. 4.
    Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Dumenil AM, Sáez JC (2017) ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X7 receptors. Sci Signal 10(506). Scholar
  5. 5.
    Thiam HR, Vargas P, Carpi N, Crespo CL, Raab M, Terriac E, King MC, Jacobelli J, Alberts AS, Stradal T, Lennon-Dumenil AM, Piel M (2016) Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 7:10997. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ufer F, Vargas P, Engler JB, Tintelnot J, Schattling B, Winkler H, Bauer S, Kursawe N, Willing A, Keminer O, Ohana O, Salinas-Riester G, Pless O, Kuhl D, Friese MA (2016) Arc/Arg3.1 governs inflammatory dendritic cell migration from the skin and thereby controls T cell activation. Sci Immunol 1:eaaf8665–eaaf8665CrossRefPubMedGoogle Scholar
  7. 7.
    Vargas P, Maiuri P, Bretou M, Sáez PJ, Pierobon P, Maurin M, Chabaud M, Lankar D, Obino D, Terriac E, Raab M, Thiam HR, Brocker T, Kitchen-Goosen SM, Alberts AS, Sunareni P, Xia S, Li R, Voituriez R, Piel M, Lennon-Dumenil AM (2016) Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat Cell Biol 18(1):43–53. CrossRefPubMedGoogle Scholar
  8. 8.
    Wilson K, Lewalle A, Fritzsche M, Thorogate R, Duke T, Charras G (2013) Mechanisms of leading edge protrusion in interstitial migration. Nat Commun 4:2896. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I, Legler DF, Luther SA, Bollenbach T, Sixt M (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339(6117):328–332. CrossRefPubMedGoogle Scholar
  10. 10.
    Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Dumenil AM, Manel N, Piel M (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352(6283):359–362. CrossRefPubMedGoogle Scholar
  11. 11.
    Schwarz J, Bierbaum V, Merrin J, Frank T, Hauschild R, Bollenbach T, Tay S, Sixt M, Mehling M (2016) A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients. Sci Rep 6:36440. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schwarz J, Sixt M (2016) Quantitative analysis of dendritic cell haptotaxis. Methods Enzymol 570:567–581. CrossRefPubMedGoogle Scholar
  13. 13.
    Haessler U, Pisano M, Wu M, Swartz MA (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 108(14):5614–5619. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang BG, Tanaka T, Jang MH, Bai Z, Hayasaka H, Miyasaka M (2007) Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J Immunol 179(7):4376–4382CrossRefPubMedGoogle Scholar
  15. 15.
    Riedl J, Flynn KC, Raducanu A, Gartner F, Beck G, Bosl M, Bradke F, Massberg S, Aszodi A, Sixt M, Wedlich-Soldner R (2010) Lifeact mice for studying F-actin dynamics. Nat Methods 7(3):168–169. nmeth0310-168 [pii]CrossRefPubMedGoogle Scholar
  16. 16.
    Vargas P, Chabaud M, Thiam HR, Lankar D, Piel M, Lennon-Dumenil AM (2016) Study of dendritic cell migration using micro-fabrication. J Immunol Methods 432:30–34. CrossRefPubMedGoogle Scholar
  17. 17.
    Vargas P, Terriac E, Lennon-Dumenil AM, Piel M (2014) Study of cell migration in microfabricated channels. J Visual Exp 84:e51099. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Pablo J. Sáez
    • 1
    • 2
  • Lucie Barbier
    • 1
    • 2
    • 3
  • Rafaele Attia
    • 1
    • 2
  • Hawa-Racine Thiam
    • 1
    • 2
  • Matthieu Piel
    • 1
    • 2
  • Pablo Vargas
    • 1
    • 2
    Email author
  1. 1.Institut CuriePSL Research University, CNRS, UMR 144ParisFrance
  2. 2.Institut Pierre-Gilles de GennesPSL Research UniversityParisFrance
  3. 3.Université Paris Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations