Advertisement

Cell Migration pp 351-360 | Cite as

Neutrophil Chemotaxis in One Droplet of Blood Using Microfluidic Assays

  • Xiao Wang
  • Daniel IrimiaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Neutrophils are the most abundant leukocytes in blood serving as the first line of host defense in tissue damage and infections. Upon activation by chemokines released from pathogens or injured tissues, neutrophils migrate through tissues toward sites of infections along the chemokine gradients, in a process named chemotaxis. Studying neutrophil chemotaxis using conventional tools, such as a transwell assay, often requires isolation of neutrophils from whole blood. This process requires milliliters of blood, trained personnel, and can easily alter the ability of chemotaxis. Microfluidics is an enabling technology for studying chemotaxis of neutrophils in vitro with high temporal and spatial resolution. In this chapter, we describe a procedure for probing human neutrophil chemotaxis directly in one droplet of whole blood, without neutrophil isolation, using microfluidic devices. The same devices can be applied to the study the chemotaxis of neutrophils from small animals, e.g., mice and rats.

Key words

Chemotaxis Microfluidics Neutrophils Speed Persistence Blood 

References

  1. 1.
    de Oliveira S, Rosowski EE, Huttenlocher A (2016) Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 16(6):378–391.  https://doi.org/10.1038/nri.2016.49 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dinauer MC (2014) Disorders of neutrophil function: an overview. Methods Mol Biol 1124:501–515.  https://doi.org/10.1007/978-1-62703-845-4_30 CrossRefPubMedGoogle Scholar
  3. 3.
    Butler KL, Ambravaneswaran V, Agrawal N, Bilodeau M, Toner M, Tompkins RG, Fagan S, Irimia D (2010) Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS One 5(7):e11921.  https://doi.org/10.1371/journal.pone.0011921 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    LeBlanc AK, LeBlanc CJ, Rohrbach BW, Kania SA (2015) Serial evaluation of neutrophil function in tumour-bearing dogs undergoing chemotherapy. Vet Comp Oncol 13(1):20–27.  https://doi.org/10.1111/vco.12015 CrossRefPubMedGoogle Scholar
  5. 5.
    Soehnlein O, Steffens S, Hidalgo A, Weber C (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17(4):248–261.  https://doi.org/10.1038/nri.2017.10 CrossRefPubMedGoogle Scholar
  6. 6.
    Brown KA, Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher DF (2006) Neutrophils in development of multiple organ failure in sepsis. Lancet 368(9530):157–169.  https://doi.org/10.1016/S0140-6736(06)69005-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75(2 Pt 1):606–616CrossRefPubMedGoogle Scholar
  9. 9.
    Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775PubMedGoogle Scholar
  10. 10.
    Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287(5455):1037–1040CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373.  https://doi.org/10.1038/nature05058 CrossRefPubMedGoogle Scholar
  12. 12.
    Irimia D, Ellett F (2016) Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 100(2):291–304.  https://doi.org/10.1189/jlb.5RU0216-056R CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477.  https://doi.org/10.1021/ac0518710 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Irimia D, Charras G, Agrawal N, Mitchison T, Toner M (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790.  https://doi.org/10.1039/b710524j CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Agrawal N, Toner M, Irimia D (2008) Neutrophil migration assay from a drop of blood. Lab Chip 8(12):2054–2061.  https://doi.org/10.1039/b813588f CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hamza B, Wong E, Patel S, Cho H, Martel J, Irimia D (2014) Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integrat Biol 6(2):175–183.  https://doi.org/10.1039/c3ib40175h CrossRefGoogle Scholar
  17. 17.
    Hoang AN, Jones CN, Dimisko L, Hamza B, Martel J, Kojic N, Irimia D (2013) Measuring neutrophil speed and directionality during chemotaxis, directly from a droplet of whole blood. Technology 1(1):49.  https://doi.org/10.1142/S2339547813500040 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jones CN, Hoang AN, Dimisko L, Hamza B, Martel J, Irimia D (2014) Microfluidic platform for measuring neutrophil chemotaxis from unprocessed whole blood. J Vis Exp (88).  https://doi.org/10.3791/51215
  19. 19.
    Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, Irimia D, Toner M, Serhan CN (2008) Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J Immunol 181(12):8677–8687CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sackmann EK, Berthier E, Schwantes EA, Fichtinger PS, Evans MD, Dziadzio LL, Huttenlocher A, Mathur SK, Beebe DJ (2014) Characterizing asthma from a drop of blood using neutrophil chemotaxis. Proc Natl Acad Sci U S A 111(16):5813–5818.  https://doi.org/10.1073/pnas.1324043111 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sackmann EK, Berthier E, Young EW, Shelef MA, Wernimont SA, Huttenlocher A, Beebe DJ (2012) Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 120(14):e45–e53.  https://doi.org/10.1182/blood-2012-03-416453 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D (2016) Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 100(1):241–247.  https://doi.org/10.1189/jlb.5TA0715-310RR CrossRefPubMedGoogle Scholar
  23. 23.
    Mankovich AR, Lee CY, Heinrich V (2013) Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils. PLoS One 8(1):e54735.  https://doi.org/10.1371/journal.pone.0054735 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.BioMEMS Resource Center, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Shriners Burns HospitalBostonUSA

Personalised recommendations