Advertisement

Cell Migration pp 325-340 | Cite as

Electrotaxis: Cell Directional Movement in Electric Fields

  • Jolanta SrokaEmail author
  • Eliza Zimolag
  • Slawomir Lasota
  • Wlodzimierz Korohoda
  • Zbigniew Madeja
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Electrotaxis plays an important role during embryogenesis, inflammation, wound healing, and tumour metastasis. However, the mechanisms at play during electrotaxis are still poorly understood. Therefore intensive studies on signaling pathways involved in this phenomenon should be carried out. In this chapter, we described an experimental system for studying electrotaxis of Amoeba proteus, mouse embryonic fibroblasts (MEF), Walker carcinosarcoma cells WC256, and bone marrow adherent cells (BMAC).

Key words

Electric field Electrotaxis Galvanotaxis Electrotactic chamber Time-lapse videomicroscopy 

Notes

Acknowledgments

This work was supported by a grant from the National Science Centre 2012/07/B/NZ3/02909, Poland. Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

References

  1. 1.
    Bear JE, Haugh JM (2014) Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol 30:74–82CrossRefPubMedGoogle Scholar
  2. 2.
    Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K (2011) The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen 19:645–655CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978.  https://doi.org/10.1152/physrev.00020.2004 CrossRefPubMedGoogle Scholar
  4. 4.
    Martin-Granados C, McCaig CD (2013) Harnessing the electric spark of life to cure skin wounds. Adv Wound Care 3:127–138CrossRefGoogle Scholar
  5. 5.
    Sheridan DM, Isseroff RR, Nuccitelli R (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 106:642–646CrossRefPubMedGoogle Scholar
  6. 6.
    Cooper MS, Schliwa M (1986) Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol 102:1384–1399CrossRefPubMedGoogle Scholar
  7. 7.
    Kim MS, Lee MH, Kwon B-J, Koo M-A, Seon GM, Park J-C (2015) Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields. Biochem Biophys Res Commun 460:255–260CrossRefPubMedGoogle Scholar
  8. 8.
    Djamgoz MBA, Mycielska M, Madeja Z, Fraser SP, Korohoda W (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltagegated Na+ channel activity. J Cell Sci 114:2697–2705PubMedGoogle Scholar
  9. 9.
    Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M, Madeja Z (2016) Lamellipodia and membrane blebs drive efficient electrotactic migration of rat walker carcinosarcoma cells WC 256. PLoS One 11:e0149133CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Krecioch I, Madeja Z, Lasota S, Zimolag E, Sroka J (2015) The role of microtubules in electrotaxis of rat Walker carcinosarcoma WC256 cells. Acta Biochim Pol 62:401–406CrossRefPubMedGoogle Scholar
  11. 11.
    Zimolag E, Borowczyk-Michalowska J, Kedracka-Krok S, Skupien-Rabian B, Karnas E, Lasota S, Sroka J, Drukala J, Madeja Z (2017) Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Biochim Biophys Acta, Mol Cell Res 1864:267–279CrossRefPubMedGoogle Scholar
  12. 12.
    Rapp B, De Boisfleury-Chevance A, Gruler H (1988) Galvanotaxis of human granulocytes – dose-response curve. Eur Biophys J 16:313–319CrossRefPubMedGoogle Scholar
  13. 13.
    Chang PC, Sulik GI, Soong HK, Parkinson WC (1996) Galvanotropic and galvanotaxic responses of corneal endothelial cells. J Formos Med Assoc 95:623–627PubMedGoogle Scholar
  14. 14.
    Zhao M, Bai H, Wang E, Forrester JV, McCaig CD (2004) Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci 117:397–405CrossRefPubMedGoogle Scholar
  15. 15.
    Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, Ning K, Li L, Chang N, Zhang L, Wang Z, Hu X, Wan Q (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 26:2193–2200CrossRefPubMedGoogle Scholar
  16. 16.
    Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BAJ, Marinkovich MP, Isseroff RR (2006) Beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 17:4925–4935CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Poo M, Robinson KR (1977) Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265:602–605CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao M, Pu J, Forrester JV, McCaig CD (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. FASEB J 16:857–859CrossRefPubMedGoogle Scholar
  19. 19.
    Orida N, Poo MM (1978) Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature 275:31–35CrossRefPubMedGoogle Scholar
  20. 20.
    Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112(Pt 12):1967–1978PubMedGoogle Scholar
  21. 21.
    Hart FX (2006) Integrins may serve as mechanical transducers for low-frequency electric fields. Bioelectromagnetics 27:505–508CrossRefPubMedGoogle Scholar
  22. 22.
    Ozkucur N, Perike S, Sharma P, Funk RHW (2011) Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 12:4CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rajnicek AM (2006) Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J Cell Sci 119:1723–1735CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10:1259–1276CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp Neurol 227:210–217CrossRefPubMedGoogle Scholar
  26. 26.
    Labanowski J (1979) Analysis of conditions for preparative electrophoresis of cells and subcellular fractions. Dissertation, Jagiellonian UniversityGoogle Scholar
  27. 27.
    Prescott DM, James TW (1955) Culturing of Amoeba proteus on Tetrahymena. Exp Cell Res 8:256–258CrossRefPubMedGoogle Scholar
  28. 28.
    Sroka J, von Gunten M, Dunn GA, Keller HU (2002) Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int J Biochem Cell Biol 34:882–899CrossRefPubMedGoogle Scholar
  29. 29.
    C a E, Nuccitelli R (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol 98:296–307CrossRefGoogle Scholar
  30. 30.
    Gruler H, Nuccitelli R (1991) Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil Cytoskeleton 19:121–133CrossRefPubMedGoogle Scholar
  31. 31.
    Sroka J, Antosik A, Czyż J, Nalvarte I, Olsson JM, Spyrou G, Madeja Z (2007) Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol Cell 99:677–687CrossRefPubMedGoogle Scholar
  32. 32.
    Sroka J, Kamiński R, Michalik M, Madeja Z, Przestalski S, Korohoda W (2004) The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell Mol Biol Lett 9:15–30PubMedGoogle Scholar
  33. 33.
    McCutcheon M (1946) Chemotaxis in leukocytes. Physiol Rev 26:319–336CrossRefPubMedGoogle Scholar
  34. 34.
    Korohoda W, Madeja Z, Sroka J (2002) Diverse chemotactic responses of Dictyostelium discoideum amoebae in the developing (temporal) and stationary (spatial) concentration gradients of folic acid, cAMP, Ca2+ and Mg2+. Cell Motil Cytoskeleton 53:1–25CrossRefPubMedGoogle Scholar
  35. 35.
    Korohoda W, Golda J, Sroka J, Wojnarowicz A, Jochym P, Madeja Z (1997) Chemotaxis of Amoeba proteus in the developing pH gradient within a pocket-like chamber studied with the computer assisted method. Cell Motil Cytoskeleton 38:38–53CrossRefPubMedGoogle Scholar
  36. 36.
    Cassidy-Hanley DM (2012) Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 109:237–276CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Korohoda W, Mycielska M, Janda E, Madeja Z (2000) Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motil Cytoskeleton 45:10–26CrossRefPubMedGoogle Scholar
  38. 38.
    Grys M, Madeja Z, Korohoda W (2017) Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival. Cell Mol Biol Lett 22:1CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Masuzzo P, Van Troys M, Ampe C, Martens L (2016) Taking aim at moving targets in computational cell migration. Trends Cell Biol 26:88–110CrossRefPubMedGoogle Scholar
  40. 40.
    Waligórska A, Wianecka-Skoczeń M, Nowak P, Korohoda W (2007) Some difficulties in research into cell motile activity under isotropic conditions. Folia Biol (Praha) 55:9–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jolanta Sroka
    • 1
    Email author
  • Eliza Zimolag
    • 1
  • Slawomir Lasota
    • 1
  • Wlodzimierz Korohoda
    • 1
  • Zbigniew Madeja
    • 1
  1. 1.Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell BiologyJagiellonian UniversityKrakowPoland

Personalised recommendations