Advertisement

Cell Migration pp 313-324 | Cite as

Optogenetic Control of Cell Migration

  • Xenia Meshik
  • Patrick R. O’Neill
  • N. GautamEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Subcellular optogenetics allows specific proteins to be optically activated or inhibited at a restricted subcellular location in intact living cells. It provides unprecedented control of dynamic cell behaviors. Optically modulating the activity of signaling molecules on one side of a cell helps optically control cell polarization and directional cell migration. Combining subcellular optogenetics with live cell imaging of the induced molecular and cellular responses in real time helps decipher the spatially and temporally dynamic molecular mechanisms that control a stereotypical complex cell behavior, cell migration. Here we describe methods for optogenetic control of cell migration by targeting three classes of key signaling switches that mediate directional cellular chemotaxis—G protein coupled receptors (GPCRs), heterotrimeric G proteins, and Rho family monomeric G proteins.

Key words

Cell migration Optogenetics Subcellular Signaling Opsin GPCRs Light induced dimerization Fluorescence microscopy 

Notes

Acknowledgment

This work was funded by the National Institutes of Health through National Institute of General Medical Sciences Grants GM069027, GM107370, and GM122577.

References

  1. 1.
    Devreotes P, Horwitz AR (2015) Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7(8):a005959.  https://doi.org/10.1101/cshperspect.a005959 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Karunarathne WK, O’Neill PR, Gautam N (2015) Subcellular optogenetics – controlling signaling and single-cell behavior. J Cell Sci 128(1):15–25.  https://doi.org/10.1242/jcs.154435 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    O'Neill PR, Gautam N (2015) Optimizing optogenetic constructs for control over signaling and cell behaviours. Photochem Photobiol Sci 14(9):1578–1585.  https://doi.org/10.1039/c5pp00171d CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Karunarathne WK, Giri L, Patel AK, Venkatesh KV, Gautam N (2013) Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration. Proc Natl Acad Sci U S A 110(17):E1575–E1583.  https://doi.org/10.1073/pnas.1220755110 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Karunarathne WK, Giri L, Kalyanaraman V, Gautam N (2013) Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc Natl Acad Sci U S A 110(17):E1565–E1574.  https://doi.org/10.1073/pnas.1220697110 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    O'Neill PR, Gautam N (2014) Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell 25(15):2305–2314.  https://doi.org/10.1091/mbc.E14-04-0870 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    O'Neill PR, Kalyanaraman V, Gautam N (2016) Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration. Mol Biol Cell.  https://doi.org/10.1091/mbc.E15-12-0832
  8. 8.
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975.  https://doi.org/10.1038/nmeth.1524 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H, Bear JE, Kuhlman B (2015) Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A 112(1):112–117.  https://doi.org/10.1073/pnas.1417910112 CrossRefPubMedGoogle Scholar
  10. 10.
    Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P (2012) Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A 109(35):E2316–E2323.  https://doi.org/10.1073/pnas.1211305109 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhao M, Discipio RG, Wimmer AG, Schraufstatter IU (2006) Regulation of CXCR4-mediated nuclear translocation of extracellular signal-related kinases 1 and 2. Mol Pharmacol 69(1):66–75.  https://doi.org/10.1124/mol.105.016923 PubMedGoogle Scholar
  12. 12.
    Wang F (2009) The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol 1(4):a002980.  https://doi.org/10.1101/cshperspect.a002980 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32CrossRefPubMedGoogle Scholar
  14. 14.
    Saini DK, Kalyanaraman V, Chisari M, Gautam N (2007) A family of G protein betagamma subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. J Biol Chem 282(33):24099–24108.  https://doi.org/10.1074/jbc.M701191200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Xenia Meshik
    • 1
  • Patrick R. O’Neill
    • 1
    • 2
  • N. Gautam
    • 1
    • 2
    Email author
  1. 1.Department of AnesthesiologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of GeneticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations