Advertisement

Cell Migration pp 291-311 | Cite as

Using Single-Protein Tracking to Study Cell Migration

  • Thomas Orré
  • Amine Mehidi
  • Sophie Massou
  • Olivier Rossier
  • Grégory GiannoneEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

To get a complete understanding of cell migration, it is critical to study its orchestration at the molecular level. Since the recent developments in single-molecule imaging, it is now possible to study molecular phenomena at the single-molecule level inside living cells. In this chapter, we describe how such approaches have been and can be used to decipher molecular mechanisms involved in cell migration.

Key words

Cell migration Single-protein tracking Superresolution microscopy Integrin-dependent adhesion Lamellipodium 

Abbreviations

AOTF

Acousto-optic tunable filter

Cas9

CRISPR associated protein 9

CRISPR

Clustered regularly interspaced short palindromic repeats

D

Diffusion coefficient

DMEM

Dulbecco’s modified Eagle medium, high glucose

EDTA

Ethylenediaminetetraacetic acid

EMCCD

Electron-multiplying charge-coupled device

FBS

Fetal bovine serum

FWHM

Full width at half maximum

GFP

Green fluorescent protein

MEF

Mouse embryonic fibroblast

mEos2

Monomeric Eos2

MSD

Mean square displacement

NA

Numerical aperture

PALM

Photoactivation localization microscopy

PBS

Phosphate buffered saline

sCMOS

Scientific complementary metal-oxide semiconductor

SRR

Superresolved reconstruction image

STL

Superresolution time-lapse movie

TIRF

Total internal reflection fluorescence

uPAINT

Universal point accumulation imaging in nanoscale topography

References

  1. 1.
    Hu K, Ji L, Applegate KT et al (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115.  https://doi.org/10.1126/science.1135085 CrossRefPubMedGoogle Scholar
  2. 2.
    Rossier O, Octeau V, Sibarita J-BB et al (2012) Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14:1057–1067.  https://doi.org/10.1038/ncb2588 CrossRefPubMedGoogle Scholar
  3. 3.
    Paszek MJ, DuFort CC, Rossier O et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325.  https://doi.org/10.1038/nature13535 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from stargazin. Neuron 85:787–803.  https://doi.org/10.1016/j.neuron.2015.01.012 CrossRefPubMedGoogle Scholar
  5. 5.
    Murakoshi H, Iino R, Kobayashi T et al (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci 101:7317–7322.  https://doi.org/10.1073/pnas.0401354101 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chazeau A, Mehidi A, Nair D et al (2014) Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J 33:2745–2764.  https://doi.org/10.15252/embj.201488837 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shibata ACE, Chen LH, Nagai R et al (2013) Rac1 recruitment to the archipelago structure of the focal adhesion through the fluid membrane as revealed by single-molecule analysis. Cytoskeleton 70:161–177.  https://doi.org/10.1002/cm.21097 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Charest PG, Firtel RA (2007) Big roles for small GTPases in the control of directed cell movement. Biochem J 401:377–390.  https://doi.org/10.1042/BJ20061432 CrossRefPubMedGoogle Scholar
  9. 9.
    Felsenfeld DP, Choquet D, Sheetz MP (1996) Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 383:438–440.  https://doi.org/10.1038/383438a0 CrossRefPubMedGoogle Scholar
  10. 10.
    De Brabander M, Geuens G, Nuydens R et al (1985) Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283PubMedGoogle Scholar
  11. 11.
    Suter DM, Forscher P (2001) Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J Cell Biol 155:427–438.  https://doi.org/10.1083/jcb.200107063 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dahan M (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking445. Science 302:442.  https://doi.org/10.1126/science.1088525 CrossRefPubMedGoogle Scholar
  13. 13.
    Groc L, Heine M, Cognet L et al (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7:695–696.  https://doi.org/10.1038/nn1270 CrossRefPubMedGoogle Scholar
  14. 14.
    Tardin C, Cognet L, Bats C et al (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 22:4656–4665.  https://doi.org/10.1093/emboj/cdg463 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48.  https://doi.org/10.1016/S0092-8674(00)81856-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Giannone G, Jiang G, Sutton DH et al (2003) Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163:409–419.  https://doi.org/10.1083/jcb.200302001 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jiang G, Giannone G, Critchley DR et al (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337.  https://doi.org/10.1038/nature01805 CrossRefPubMedGoogle Scholar
  18. 18.
    Leduc C, Si S, Gautier J et al (2013) A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett 13:1489–1494.  https://doi.org/10.1021/nl304561g CrossRefPubMedGoogle Scholar
  19. 19.
    Chamma I, Rossier O, Giannone G et al (2017) Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nat Protoc 12:748–763.  https://doi.org/10.1038/nprot.2017.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565.  https://doi.org/10.1016/j.tcb.2009.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157.  https://doi.org/10.1038/nmeth.1176 CrossRefPubMedGoogle Scholar
  22. 22.
    Cognet L, Leduc CC, Lounis B (2014) Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr Opin Chem Biol 20:78–85.  https://doi.org/10.1016/j.cbpa.2014.04.015 CrossRefPubMedGoogle Scholar
  23. 23.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016.  https://doi.org/10.1146/annurev.biochem.77.061906.092014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Izeddin I, Boulanger J, Racine V et al (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20:2081–2095.  https://doi.org/10.1364/OE.20.002081 CrossRefPubMedGoogle Scholar
  25. 25.
    Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV (2014) Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 43:303–329.  https://doi.org/10.1146/annurev-biophys-051013-022836 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Giannone G, Hosy E, Levet F et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99:1303–1310.  https://doi.org/10.1016/j.bpj.2010.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nair D, Hosy E, Petersen JD et al (2013) Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J Neurosci 33:13204–13224.  https://doi.org/10.1523/JNEUROSCI.2381-12.2013 CrossRefPubMedGoogle Scholar
  28. 28.
    Courty S, Luccardini C, Bellaiche Y et al (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6:1491–1495.  https://doi.org/10.1021/nl060921t CrossRefPubMedGoogle Scholar
  29. 29.
    Keppler A, Kindermann M, Gendreizig S et al (2004) Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. Methods 32:437–444.  https://doi.org/10.1016/j.ymeth.2003.10.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Keppler A, Pick H, Arrivoli C et al (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci 101:9955–9959.  https://doi.org/10.1073/pnas.0401923101 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250.  https://doi.org/10.1038/nmeth.3256 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584.  https://doi.org/10.1038/nmeth.1991 CrossRefPubMedGoogle Scholar
  33. 33.
    Chamma I, Letellier M, Butler C et al (2016) Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat Commun 7:10773.  https://doi.org/10.1038/ncomms10773 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kechkar A, Nair D, Heilemann M et al (2013) Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One.  https://doi.org/10.1371/journal.pone.0062918
  35. 35.
    Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390.  https://doi.org/10.1093/bioinformatics/btu202 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696.  https://doi.org/10.1038/nmeth.2075 CrossRefPubMedGoogle Scholar
  37. 37.
    Chenouard N, Bloch I, Olivo-Marin J-C (2013) Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans Pattern Anal Mach Intell 35:2736–3750.  https://doi.org/10.1109/TPAMI.2013.97 CrossRefPubMedGoogle Scholar
  38. 38.
    Zala D, Hinckelmann MV, Yu H et al (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491.  https://doi.org/10.1016/j.cell.2012.12.029 CrossRefPubMedGoogle Scholar
  39. 39.
    Racine V, Hertzog A, Jouanneau J, et al (2006) Multiple-target tracking of 3D fluorescent objects based on simulated annealing. In: Third IEEE international symposium on biomediocal imaging: macro to nano, 2006. IEEE, pp 1020–1023Google Scholar
  40. 40.
    Racine V, Sachse M, Salamero J et al (2007) Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc 225:214–228.  https://doi.org/10.1111/j.1365-2818.2007.01723.x. JMI1723 [pii]CrossRefPubMedGoogle Scholar
  41. 41.
    Das S, Yin T, Yang Q et al (2015) Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling. Proc Natl Acad Sci U S A 112:E267–E276.  https://doi.org/10.1073/pnas.1409667112 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    El BM, Dahan M, Masson J-B (2015) InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat Methods 12:594–595.  https://doi.org/10.1038/nmeth.3441 CrossRefGoogle Scholar
  43. 43.
    Cluzel C, Saltel F, Lussi J et al (2005) The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 171:383–392.  https://doi.org/10.1083/jcb.200503017 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brown CM, Hebert B, Kolin DL et al (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping. J Cell Sci 119:5204–5214.  https://doi.org/10.1242/jcs.03321 CrossRefPubMedGoogle Scholar
  45. 45.
    Frost NA, Shroff H, Kong H et al (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67:86–99.  https://doi.org/10.1016/j.neuron.2010.05.026 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Honkura N, Matsuzaki M, Noguchi J et al (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729.  https://doi.org/10.1016/j.neuron.2008.01.013 CrossRefPubMedGoogle Scholar
  47. 47.
    Lai FPL, Szczodrak M, Block J et al (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27:982–992.  https://doi.org/10.1038/emboj.2008.34 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Watanabe N, Mitchison TJ (2002) Single-molecule speckle analysis of actin filament turnover in Lamellipodia. Science 295:1083–1086.  https://doi.org/10.1126/science.1067470 CrossRefPubMedGoogle Scholar
  49. 49.
    Giannone G, Mège RM, Thoumine O et al (2009) Multi-level molecular clutches in motile cell processes. Trends Cell Biol 19:475–486.  https://doi.org/10.1016/j.tcb.2009.07.001 CrossRefPubMedGoogle Scholar
  50. 50.
    Ponti A, Machacek M, Gupton SL et al (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–1786.  https://doi.org/10.1126/science.1100533 CrossRefPubMedGoogle Scholar
  51. 51.
    Garcia M, Leduc C, Lagardère M et al (2015) Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones. Proc Natl Acad Sci 112:6997–7002.  https://doi.org/10.1073/pnas.1423455112 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tatavarty V, Kim EJ, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS One.  https://doi.org/10.1371/journal.pone.0007724
  53. 53.
    Tatavarty V, Das S, Yu J (2012) Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 23:3167–3177.  https://doi.org/10.1091/mbc.E12-02-0165 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584.  https://doi.org/10.1038/nature09621 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Case LB, Baird M, Shtengel G et al (2015) Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 17:880–892.  https://doi.org/10.1038/ncb3180 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456.  https://doi.org/10.1126/science.1232251 CrossRefPubMedGoogle Scholar
  57. 57.
    Jungmann R, Avendaño MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318.  https://doi.org/10.1038/nmeth.2835 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jungmann R, Steinhauer C, Scheible M et al (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–4761.  https://doi.org/10.1021/nl103427w CrossRefPubMedGoogle Scholar
  59. 59.
    Schnitzbauer J, Strauss MT, Schlichthaerle T et al (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12:1198–1228.  https://doi.org/10.1038/nprot.2017.024 CrossRefPubMedGoogle Scholar
  60. 60.
    Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465.  https://doi.org/10.1038/nbt1191 CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang M, Chang H, Zhang Y et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–729.  https://doi.org/10.1038/nmeth.2021 CrossRefPubMedGoogle Scholar
  62. 62.
    Cranfill PJ, Sell BR, Baird MA et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562.  https://doi.org/10.1038/nmeth.3891 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Guan J, Liu H, Shi X et al (2017) Tracking multiple genomic elements using correlative CRISPR imaging and sequential DNA FISH. Biophys J 112:1077–1084.  https://doi.org/10.1016/j.bpj.2017.01.032 CrossRefPubMedGoogle Scholar
  64. 64.
    Ratz M, Testa I, Hell SW, Jakobs S (2015) CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci Rep 5:9592.  https://doi.org/10.1038/srep09592 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Truong Quang BA, Mani M, Markova O et al (2013) Principles of E-cadherin supramolecular organization in vivo. Curr Biol 23:2197–2207.  https://doi.org/10.1016/j.cub.2013.09.015 CrossRefPubMedGoogle Scholar
  66. 66.
    Karathanasis C, Fricke F, Hummer G, Heilemann M (2017) Molecule counts in localization microscopy with organic fluorophores. ChemPhysChem 18:942–948.  https://doi.org/10.1002/cphc.201601425 CrossRefPubMedGoogle Scholar
  67. 67.
    Levet F, Hosy E, Kechkar A et al (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12:1065–1071.  https://doi.org/10.1038/nmeth.3579 CrossRefPubMedGoogle Scholar
  68. 68.
    Giannone G, Mondin M, Grillo-Bosch D et al (2013) Neurexin-1β binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep 3:1996–2007.  https://doi.org/10.1016/j.celrep.2013.05.013 CrossRefPubMedGoogle Scholar
  69. 69.
    Simson R, Sheets ED, Jacobson K (1995) Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 69:989–993.  https://doi.org/10.1016/S0006-3495(95)79972-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Thomas Orré
    • 1
    • 2
  • Amine Mehidi
    • 1
    • 2
  • Sophie Massou
    • 1
    • 2
  • Olivier Rossier
    • 1
    • 2
  • Grégory Giannone
    • 1
    • 2
    Email author
  1. 1.Interdisciplinary Institute for Neuroscience, UMR 5297University of BordeauxBordeauxFrance
  2. 2.Interdisciplinary Institute for Neuroscience, UMR 5297CNRSBordeauxFrance

Personalised recommendations