Advertisement

Cell Migration pp 227-238 | Cite as

Analysis of Cell Shape and Cell Migration of Drosophila Macrophages In Vivo

  • Marike Rüder
  • Benedikt M. Nagel
  • Sven BogdanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

The most abundant immune cells in Drosophila are macrophage-like plasmatocytes that fulfill central roles in morphogenesis, immune and tissue damage response. The various genetic tools available in Drosophila together with high-resolution and live-imaging microscopy techniques make Drosophila macrophages an excellent model system that combines many advantages of cultured cells with in vivo genetics. Here, we describe the isolation and staining of macrophages from larvae for ex vivo structured illumination microscopy (SIM), the preparation of white prepupae for in vivo 2D random cell migration analysis, and the preparation of pupae (18 h after puparium formation, APF) for in vivo 3D directed cell migration analysis upon wounding using spinning disk microscopy.

Key words

Drosophila Macrophages Plasmatocytes Cell shape Cell motility Wounding Live cell imaging Structured illumination microscopy (SIM) Laser ablation Spinning disk microscopy 

Notes

Acknowledgment

We thank L. Brüser for critical reading of the manuscript, and the Bloomington Stock Center and VDRC for fly stocks. This work was supported by a grant to S.B. from the cluster of excellence ‘Cells in Motion’ (CIM; Deutsche Forschungsgemeinschaft) (BO 1890/1, BO 1890/2, BO 1890/3, BO 1890/4).

References

  1. 1.
    Gold KS, Bruckner K (2016) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27(6):357–368CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743CrossRefPubMedGoogle Scholar
  3. 3.
    Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. J Immunol 178(8):4711–4716CrossRefPubMedGoogle Scholar
  4. 4.
    Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837PubMedGoogle Scholar
  5. 5.
    Makhijani K, Alexander B, Tanaka T, Rulifson E, Bruckner K (2011) The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development 138(24):5379–5391CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Holz A, Bossinger B, Strasser T, Janning W, Klapper R (2003) The two origins of hemocytes in Drosophila. Development 130(20):4955–4962CrossRefPubMedGoogle Scholar
  7. 7.
    Jung SH, Evans CJ, Uemura C, Banerjee U (2005) The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132(11):2521–2533CrossRefPubMedGoogle Scholar
  8. 8.
    Grigorian M, Mandal L, Hartenstein V (2011) Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev Genes Evol 221(3):121–131CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gold KS, Bruckner K (2015) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27(6):357–368CrossRefPubMedGoogle Scholar
  10. 10.
    Sampson CJ, Williams MJ (2012) Real-time analysis of Drosophila post-embryonic haemocyte behaviour. PLoS One 7(1):e28783CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sander M, Squarr AJ, Risse B, Jiang X, Bogdan S (2013) Drosophila pupal macrophages—a versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution. Eur J Cell Biol 92(10–11):349–354CrossRefPubMedGoogle Scholar
  12. 12.
    Jani K, Schock F (2007) Zasp is required for the assembly of functional integrin adhesion sites. J Cell Biol 179(7):1583–1597CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nagel BM, Bechtold M, Rodriguez LG, Bogdan S (2017) Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J Cell Sci 130(2):344–359CrossRefPubMedGoogle Scholar
  14. 14.
    Sinenko SA, Mathey-Prevot B (2004) Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 23(56):9120–9128CrossRefPubMedGoogle Scholar
  15. 15.
    Brinkmann K, Winterhoff M, Onel SF, Schultz J, Faix J, Bogdan S (2016) WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J Cell Sci 129(3):604–620CrossRefPubMedGoogle Scholar
  16. 16.
    Moreira CG, Jacinto A, Prag S (2013) Drosophila integrin adhesion complexes are essential for hemocyte migration in vivo. Biol Open 2(8):795–801CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M, Stramer BM (2015) Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 161(2):361–373CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168(4):567–573CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lammel U, Bechtold M, Risse B, Berh D, Fleige A, Bunse I, Jiang X, Klambt C, Bogdan S (2014) The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 141(6):1366–1380CrossRefPubMedGoogle Scholar
  20. 20.
    Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156(4):689–701CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vlisidou I, Wood W (2015) Drosophila blood cells and their role in immune responses. FEBS J 282(8):1368–1382CrossRefPubMedGoogle Scholar
  22. 22.
    Lindsey DL, Zimm GG. San Diego: Academic Press; (1992) The genome of Drosophila melanogaster; pp. 804–1066Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Marike Rüder
    • 1
  • Benedikt M. Nagel
    • 1
  • Sven Bogdan
    • 1
    Email author
  1. 1.Institut für Physiologie und Pathophysiologie, Abteilung Molekulare ZellphysiologiePhillips-Universität MarburgMarburgGermany

Personalised recommendations