Advertisement

Cell Migration pp 213-226 | Cite as

Analysis of In Vivo Cell Migration in Mosaic Zebrafish Embryos

  • Arthur Boutillon
  • Florence A. Giger
  • Nicolas B. DavidEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Being optically clear, the zebrafish embryo is a nice model system to analyze cell migration in vivo. This chapter describes a combination of injection and cell transplant procedures that allows creation of mosaic embryos, containing a few cells labeled differently from their neighbors. Rapid 5D confocal imaging of these embryos permits to simultaneously track and quantify the movement of large cell groups, as well as analyze the cellular or subcellular dynamics of transplanted cells during their migration. In addition, expression of a candidate gene can be modified in transplanted cells. Comparing behavior of these cells to control or neighboring cells allows determination of the role of the candidate gene in cell migration. We describe the procedure, focusing on one specific cell population during gastrulation, but it can easily be adapted to other cell populations and other migration events during early embryogenesis.

Key words

Zebrafish Live imaging Cell migration Cell transplantation Mosaic embryos Cell tracking 

Notes

Acknowledgments

This work was supported by the grant PJA 20151203256 from Fondation ARC pour la Recherche sur le Cancer, and grant ANR-15-CE13-0016-02 from Agence Nationale de la Recherche.

References

  1. 1.
    Horwitz R, Webb D (2003) Cell migration. Curr Biol 13:R756–R759.  https://doi.org/10.1016/B978-0-12-394447-4.20070-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Vicente-Manzanares M, Horwitz AR (2011) Cell migration: an overview. Methods Mol Biol 769:1–24.  https://doi.org/10.1007/978-1-61779-207-6_1 CrossRefPubMedGoogle Scholar
  3. 3.
    Lämmermann T, Sixt M (2009) Mechanical modes of “amoeboid” cell migration. Curr Opin Cell Biol 21:636–644.  https://doi.org/10.1016/j.ceb.2009.05.003 CrossRefPubMedGoogle Scholar
  4. 4.
    te Boekhorst V, Preziosi L, Friedl P (2016) Plasticity of cell migration in vivo and in silico. Annu Rev Cell Dev Biol 3228361:1–28.  https://doi.org/10.1146/annurev-cellbio-111315-125201 Google Scholar
  5. 5.
    Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022.  https://doi.org/10.1016/j.cell.2011.06.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–566.  https://doi.org/10.1016/j.tcb.2015.06.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Theveneau E, David NB (2014) Collective cell migrations. Med Sci (Paris) 30:751–757.  https://doi.org/10.1051/medsci/20143008012 CrossRefGoogle Scholar
  8. 8.
    Row RH, Maître J-LL, Martin BL et al (2011) Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol 354:102–110.  https://doi.org/10.1016/j.ydbio.2011.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Montero J-A, Carvalho L, Wilsch-Bräuninger M et al (2005) Shield formation at the onset of zebrafish gastrulation. Development 132:1187–1198.  https://doi.org/10.1242/dev.01667 CrossRefPubMedGoogle Scholar
  10. 10.
    Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333.  https://doi.org/10.1038/nprot.2007.30 CrossRefPubMedGoogle Scholar
  11. 11.
    Solnica-Krezel LL, Sepich DS (2012) Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 28:687–717.  https://doi.org/10.1146/annurev-cellbio-092910-154043 CrossRefPubMedGoogle Scholar
  12. 12.
    Solnica-Krezel L, Stemple DL, Driever W (1995) Transparent things: cell fates and cell movements during early embryogenesis of zebrafish. BioEssays 17:931–939.  https://doi.org/10.1002/bies.950171106 CrossRefPubMedGoogle Scholar
  13. 13.
    Kai M, Heisenberg C-P, Tada M (2008) Sphingosine-1-phosphate receptors regulate individual cell behaviours underlying the directed migration of prechordal plate progenitor cells during zebrafish gastrulation. Development 135:3043–3051.  https://doi.org/10.1242/dev.020396 CrossRefPubMedGoogle Scholar
  14. 14.
    Dumortier JG, Martin S, Meyer D et al (2012) Collective mesendoderm migration relies on an intrinsic directionality signal transmitted through cell contacts. Proc Natl Acad Sci U S A 109:16945–16950.  https://doi.org/10.1073/pnas.1205870109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dumortier JG, David NB (2015) The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS One 10:e0118474.  https://doi.org/10.1371/journal.pone.0118474 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dang I, Gorelik R, Sousa-Blin C et al (2013) Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503:281–284.  https://doi.org/10.1038/nature12611 CrossRefPubMedGoogle Scholar
  17. 17.
    Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon, Eugene, ORGoogle Scholar
  18. 18.
    Emmenlauer M, Ronneberger O, Ponti A et al (2009) XuvTools: free, fast and reliable stitching of large 3D datasets. J Microsc 233:42–60.  https://doi.org/10.1111/j.1365-2818.2008.03094.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Arthur Boutillon
    • 1
  • Florence A. Giger
    • 2
  • Nicolas B. David
    • 1
    Email author
  1. 1.Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERMUniversité Paris-SaclayPalaiseau CedexFrance
  2. 2.Centre for Developmental Neurobiology, MRC CNDD, IoPPNKing’s College LondonLondonUK

Personalised recommendations