Advertisement

Cell Migration pp 175-193 | Cite as

Intravital Imaging of Tumor Cell Motility in the Tumor Microenvironment Context

  • Battuya Bayarmagnai
  • Louisiane Perrin
  • Kamyar Esmaeili Pourfarhangi
  • Bojana GligorijevicEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

Cancer cell motility and invasion are key features of metastatic tumors. Both are highly linked to tumor microenvironmental parameters, such as collagen architecture or macrophage density. However, due to the genetic, epigenetic and microenvironmental heterogeneities, only a small portion of tumor cells in the primary tumor are motile and furthermore, only a small portion of those will metastasize. This creates a challenge in predicting metastatic fate of single cells based on the phenotype they exhibit in the primary tumor. To overcome this challenge, tumor cell subpopulations need to be monitored at several timescales, mapping their phenotype in primary tumor as well as their potential homing to the secondary tumor site. Additionally, to address the spatial heterogeneity of the tumor microenvironment and how it relates to tumor cell phenotypes, large numbers of images need to be obtained from the same tumor. Finally, as the microenvironment complexity results in nonlinear relationships between tumor cell phenotype and its surroundings, advanced statistical models are required to interpret the imaging data. Toward improving our understanding of the relationship between cancer cell motility, the tumor microenvironment context and successful metastasis, we have developed several intravital approaches for continuous and longitudinal imaging, as well as data classification via support vector machine (SVM) algorithm. We also describe methods that extend the capabilities of intravital imaging by postsacrificial microscopy of the lung as well as correlative immunofluorescence in the primary tumor.

Key words

Tumor microenvironment Motility Intravital imaging Correlative immunofluorescence Invadopodia Invasion 4D multiphoton fluorescent microscopy Second harmonic generation Photoconvertible proteins Support vector machine classification 

Notes

Acknowledgments

We thank Dr. Aviv Bergman for his contribution in establishing the SVM algorithm for classification. This work was supported by grants from the NIH 5K99CA172360 and Concern Foundation Award to B.G.

Supplementary material

429754_1_En_14_MOESM1_ESM.zip (1 kb)
∎ (R 2 kb)

References

  1. 1.
    Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218.  https://doi.org/10.1038/nrc.2016.25 CrossRefPubMedGoogle Scholar
  2. 2.
    Vanharanta S, Massagué J (2013) Origins of metastatic traits. Cancer Cell 24:410–421.  https://doi.org/10.1016/j.ccr.2013.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437.  https://doi.org/10.1038/nm.3394 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Conklin MW, Eickhoff JC, Riching KM et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178:1221–1232.  https://doi.org/10.1016/j.ajpath.2010.11.076 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gehler S, Ponik SM, Riching KM, Keely PJ (2013) Bi-directional signaling: extracellular matrix and integrin regulation of breast tumor progression. Crit Rev Eukaryot Gene Expr 23:139–157CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906.  https://doi.org/10.1016/j.cell.2009.10.027 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334.  https://doi.org/10.1038/nrc3261 CrossRefPubMedGoogle Scholar
  8. 8.
    Bergman A, Condeelis JS, Gligorijevic B (2014) Invadopodia in context. Cell Adhes Migr 8:273–279.  https://doi.org/10.4161/cam.28349 CrossRefGoogle Scholar
  9. 9.
    Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76.  https://doi.org/10.1126/science.2321027 CrossRefPubMedGoogle Scholar
  10. 10.
    Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930.  https://doi.org/10.1038/nrc1231 CrossRefPubMedGoogle Scholar
  11. 11.
    Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29:97–109CrossRefPubMedGoogle Scholar
  12. 12.
    Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci 100:7075–7080.  https://doi.org/10.1073/pnas.0832308100 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li JL, Goh CC, Keeble JL et al (2012) Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat Protoc 7:221–234.  https://doi.org/10.1038/nprot.2011.438 CrossRefPubMedGoogle Scholar
  14. 14.
    Lelkes E, Headley MB, Thornton EE et al (2014) The spatiotemporal cellular dynamics of lung immunity. Trends Immunol 35:379–386.  https://doi.org/10.1016/j.it.2014.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirata E, Girotti MR, Viros A et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27:574–588.  https://doi.org/10.1016/j.ccell.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. Neuron 31:903–912.  https://doi.org/10.1016/s0896-6273(01)00421-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Ghosh KK, Burns LD, Cocker ED et al (2011) Miniaturized integration of a fluorescence microscope. Nat Methods 8:871–878.  https://doi.org/10.1038/nmeth.1694 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ewald AJ, Werb Z, Egeblad M (2011) Dynamic, long-term in vivo imaging of tumor-stroma interactions in mouse models of breast cancer using spinning-disk confocal microscopy. Cold Spring Harb Protoc 2011:pdb.top97.  https://doi.org/10.1101/pdb.top97 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Alieva M, Ritsma L, Giedt RJ et al (2014) Imaging windows for long-term intravital imaging. Intravital 3:e29917–e29916.  https://doi.org/10.4161/intv.29917 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465.  https://doi.org/10.1038/nbt1191 CrossRefPubMedGoogle Scholar
  21. 21.
    Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032.  https://doi.org/10.1038/nprot.2007.291 CrossRefPubMedGoogle Scholar
  22. 22.
    Génot E, Gligorijevic B (2014) Invadosomes in their natural habitat. Eur J Cell Biol 93:367–379.  https://doi.org/10.1016/j.ejcb.2014.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Egeblad M, Ewald AJ, Askautrud HA et al (2008) Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mech 1:155–167.  https://doi.org/10.1242/dmm.000596 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021.  https://doi.org/10.1038/nmeth.1269 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ritsma L, Vrisekoop N, van Rheenen J (2013) In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat Commun 4:2366.  https://doi.org/10.1038/ncomms3366 CrossRefPubMedGoogle Scholar
  26. 26.
    Harney AS, Arwert EN, Entenberg D et al (2015) Real-time imaging reveals local, transient vascular permeability, and tumor cell Intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov 5:932–943.  https://doi.org/10.1158/2159-8290.CD-15-0012 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wyckoff J, Wang W, Lin EY et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029.  https://doi.org/10.1158/0008-5472.CAN-04-1449 CrossRefPubMedGoogle Scholar
  28. 28.
    Wyckoff J, Gligorijevic B, Entenberg D et al (2011) High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc 2011:pdb.top065904.  https://doi.org/10.1101/pdb.top065904 CrossRefPubMedGoogle Scholar
  29. 29.
    Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41.  https://doi.org/10.1109/83.650848 CrossRefPubMedGoogle Scholar
  30. 30.
    Oser M, Mader CC, Gil-Henn H et al (2010) Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 123:3662–3673.  https://doi.org/10.1242/jcs.068163 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gligorijevic B, Bergman A, Condeelis J (2014) Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol 12:e1001995.  https://doi.org/10.1371/journal.pbio.1001995 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gligorijevic B, Wyckoff J, Yamaguchi H et al (2012) N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 125:724–734.  https://doi.org/10.1242/jcs.092726 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bredfeldt JS, Liu Y, Conklin MW et al (2014) Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform 5:28.  https://doi.org/10.4103/2153-3539.139707 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dasari S, Weber P, Makhloufi C et al (2015) Intravital microscopy imaging of the liver following Leishmania infection: an assessment of hepatic hemodynamics. J Vis Esp e52303. doi:  https://doi.org/10.3791/52303
  35. 35.
    Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999.  https://doi.org/10.1109/72.788640 CrossRefPubMedGoogle Scholar
  36. 36.
    Karatzoglou A, Meyer D, Hornik K (2006) Support vector machines in ddR. J Stat Softw 15.  https://doi.org/10.18637/jss.v015.i09
  37. 37.
    Fluegen G, Avivar-Valderas A, Wang Y et al (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120–132.  https://doi.org/10.1038/ncb3465 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Baker SM, Buckheit RW, Falk MM (2010) Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes. BMC Cell Biol 11:15.  https://doi.org/10.1186/1471-2121-11-15 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Battuya Bayarmagnai
    • 1
  • Louisiane Perrin
    • 1
  • Kamyar Esmaeili Pourfarhangi
    • 1
  • Bojana Gligorijevic
    • 1
    • 2
    Email author
  1. 1.Department of BioengineeringTemple UniversityPhiladelphiaUSA
  2. 2.Cancer Biology Program, Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations