Advertisement

Cell Migration pp 145-161 | Cite as

In Vitro Models to Analyze the Migration of MGE-Derived Interneurons

  • Claire Leclech
  • Christine MétinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1749)

Abstract

In the developing brain, MGE-derived interneuron precursors migrate tangentially long distances to reach the cortex in which they later establish connections with the principal cortical cells to control the activity of adult cortical circuits. Interneuron precursors exhibit complex morphologies and migratory properties, which are difficult to study in the heterogeneous and uncontrolled in vivo environment. Here, we describe two in vitro models in which the migration environment of interneuron precursors is significantly simplified and where their migration can be observed for one to 3 days. In one model, MGE-derived interneuron precursors are cultured and migrate on a flat synthetic substrate. In the other model, fluorescent MGE-derived interneuron precursors migrate on a monolayer of dissociated cortical cells. In both models, cell movements can be recorded by time-lapse microscopy for dynamic analyses.

Key words

Embryonic neurons Interneurons Cerebral cortex Medial ganglionic eminence Tangential migration Migration assay Culture Cocultures Culture dishes for videomicroscopy 

References

  1. 1.
    Marín O, Valiente M, Ge X, Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol 2(2):a001834CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Price J, Thurlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104(3):473–482PubMedGoogle Scholar
  3. 3.
    Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241(4871):1342–1345CrossRefPubMedGoogle Scholar
  4. 4.
    O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258(5080):299–302CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278(5337):474–476CrossRefPubMedGoogle Scholar
  6. 6.
    Fode C, Ma Q, Casarosa S, Ang SL, Anderson D, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14(1):67–80PubMedPubMedCentralGoogle Scholar
  7. 7.
    Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13(2):107–120CrossRefPubMedGoogle Scholar
  8. 8.
    Martini FJ, Valiente M, López Bendito G, Szabó G, Moya F, Valdeolmillos M, Marín O (2009) Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 136(1):41–50CrossRefPubMedGoogle Scholar
  9. 9.
    Britto JM, Johnston LA, Tan SS (2009) The stochastic search dynamics of interneuron migration. Biophys J 97(3):699–709CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Luccardini C, Hennekinne L, Viou L, Yanagida M, Murakami F, Kessaris N, Ma X, Adelstein RS, Mège RM, Métin C (2013) N-cadherin sustains motility and polarity of future cortical interneurons during tangential migration. J Neurosci 33(46):18149–18160CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Luccardini C, Leclech C, Viou L, Rio JP, Métin C (2015) Cortical interneurons migrating on a pure substrate of N-cadherin exhibit fast synchronous centrosomal and nuclear movements and reduced ciliogenesis. Front Cell Neurosci 9:286CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bellion A, Baudoin JP, Alvarez C, Bornens M, Métin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25(24):5691–5699CrossRefPubMedGoogle Scholar
  13. 13.
    Fishell G, Blazeski R, Godement P, Rivas R, Wang LC, Mason CA (1995) Tracking fluorescently labeled neurons in developing brain. FASEB J 9(5):324–334CrossRefPubMedGoogle Scholar
  14. 14.
    Gregory WA, Edmondson JC, Hatten ME, Mason CA (1988) Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci 8(5):1728–l738PubMedGoogle Scholar
  15. 15.
    Lambert M, Padilla F, Mège RM (2000) Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside-in and inside-out signals. J Cell Sci 113(Pt 12):2207–2219PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.INSERM, UMRS-839, Institut du Fer à MoulinParisFrance
  2. 2.Sorbonne Université, UPMC University Paris 6, UMRS-839ParisFrance
  3. 3.Institut du Fer à MoulinParisFrance

Personalised recommendations