Phagocytosis by Sertoli Cells: Analysis of Main Phagocytosis Steps by Confocal and Electron Microscopy

  • Marina G. Yefimova
  • Nadia Messaddeq
  • Annie-Claire Meunier
  • Anne Cantereau
  • Bernard Jegou
  • Nicolas BourmeysterEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1748)


Sertoli cells were discovered in the seminiferous tubules by Enrico Sertoli in 1865 (Morgagni 7:31–33, 1865). Intense phagocytosis is, in the context of spermatogenesis cycle, morphologically the most noticeable function of Sertoli cells. In this chapter the major principles of phagocytosis machinery and its specificities in the seminiferous tubules will be briefly reviewed, guidelines of analysis of main phagocytosis steps by confocal and transmission electron microscopy will be described, and a simplified method to assess phagocytosis rate in routine experiments will be given.


Apoptotic-like membranes Homeostatic phagocytosis Nonprofessional phagocytes Phagocytosis steps Residual bodies Sertoli cells 



We specially thank Drs Michel Blanc (Ret.), Jean-Louis Dacheux (Ret.), and Rustem Uzbekov (Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHU de Tours, France) for the help in setting on simplified methods of phagocytosis rate analysis in routine experiments. We thank Image-UP platform from Poitiers University and Imaging & Microscopy Technology Platform from IGBMC, Strasbourg.


  1. 1.
    Jégou B (1993) The Sertoli-germ cell communication network in mammals. Int Rev Cytol 147:25–96CrossRefPubMedGoogle Scholar
  2. 2.
    Lacy D (1960) Light and electron microscopy, and its use in the study of factors influencing spermatogenesis in the rat. J R Microsc Soc 79:209–225CrossRefPubMedGoogle Scholar
  3. 3.
    Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151CrossRefPubMedGoogle Scholar
  4. 4.
    Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87CrossRefPubMedGoogle Scholar
  5. 5.
    Metchnikoff E (1887) Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Ann Inst Pasteur 1:321–345Google Scholar
  6. 6.
    Nydegger UE, Miescher A, Anner RM et al (1973) Serum and cellular factor involvement in nitroblue tetrazolium (NBT) reduction by human neutrophils. Klin Wochenschr 51:377–382CrossRefPubMedGoogle Scholar
  7. 7.
    Albrecht D, Jungi TW (1993) Luminol-enhanced chemiluminescence induced in peripheral blood-derived human phagocytes: obligatory requirement of myeloperoxidase exocytosis by monocytes. J Leukoc Biol 54:300–306CrossRefPubMedGoogle Scholar
  8. 8.
    Kampen AH, Tollersrud T, Larsen S et al (2004) Repeatability of flow cytometric and classical measurement of phagocytosis and respiratory burst in bovine polymorphonuclear leucocytes. Vet Immunol Immunopathol 97:105–114CrossRefPubMedGoogle Scholar
  9. 9.
    Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Irschik EU, Sgonc R, Böck G et al (2004) Retinal pigment epithelial phagocytosis and metabolism differ from those of macrophage. Ophthalmic Res 36:200–210CrossRefGoogle Scholar
  11. 11.
    Shiratsuchi A, Osada Y, Nakanishi Y (2013) Differences in the mode of phagocytosis of bacteria between macrophages and testicular Sertoli cells. Drug Discov Ther 7(2):73–77PubMedGoogle Scholar
  12. 12.
    Kevany BM, Palczewsky K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology 25:8–15CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leblond CP, Clermont Y (1952) Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci 55(4):548–573CrossRefPubMedGoogle Scholar
  14. 14.
    Oakberg EF (1956) Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 99(3):507–516CrossRefPubMedGoogle Scholar
  15. 15.
    Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Anat 112:35–51CrossRefPubMedGoogle Scholar
  16. 16.
    Clermont Y (1972) Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52(1):198–236CrossRefPubMedGoogle Scholar
  17. 17.
    Chemes H (1986) The phagocytic function of Sertoli cells: a morphological, biochemical and endocrinological study of lysosomes and acid phosphatase localization in the rat testis. Endocrinology 119(4):1673–1681CrossRefPubMedGoogle Scholar
  18. 18.
    Blanco-Rodriguez J, Martinez-Garcia C (1999) Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod 61:1541–1547CrossRefPubMedGoogle Scholar
  19. 19.
    Russell LD, Ettlin RA, Hikim APS, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, St. LouisGoogle Scholar
  20. 20.
    Pineau C, Le Magueresse B, Courtens JL, Jégou B (1991) Study in vitro of the phagocytic function of Sertoli cells in the rat. Cell Tissue Res 264(3):589–598CrossRefPubMedGoogle Scholar
  21. 21.
    Grandjean V, Sage J, Ranc F et al (1997) Stage-specific signals in germ line differentiation: control of Sertoli cell phagocytic activity by spermatogenic cells. Dev Biol 184:165–174CrossRefPubMedGoogle Scholar
  22. 22.
    Gillot I, Jehi-Petri C, Gounon P et al (2005) Germ cells and fatty acids induce translocation of CD36 scavenger receptor to the plasma membrane of Sertoli cells. J Cell Sci 118:3027–3035CrossRefPubMedGoogle Scholar
  23. 23.
    Yamada H, Ohashi E, Abe T et al (2007) Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 18(11):4669–4680CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Otsuka A, Abe T, Watanabe M et al (2009) Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells. Biochem Biophys Res Commun 378:478–482CrossRefPubMedGoogle Scholar
  25. 25.
    Hu W, Wang H, Xiong W et al (2006) Evaluation on the phagocytosis of apoptotic spermatogenic cells by Sertoli cells in vitro through detecting lipid droplet formation by Oil Red O staining. Reproduction 132:485–492CrossRefGoogle Scholar
  26. 26.
    Eliott MR, Zheng S, Park D et al (2010) Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467:333–339CrossRefGoogle Scholar
  27. 27.
    Yefimova MG, Sow A, Fontaine I et al (2008) Dimeric transferrin inhibits phagocytosis of residual bodies by testicular rat Sertoli cells. Biol Reprod 78(4):697–704CrossRefPubMedGoogle Scholar
  28. 28.
    Meier T, Arni S, Malarkannan S et al (1992) Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal Biochem 204:220–226CrossRefPubMedGoogle Scholar
  29. 29.
    Shiratsuchi A, Umeda M, Ohba Y, Nakanishi Y (1997) Recognition of phosphatidylserine on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J Biol Chem 272(4):2354–2358CrossRefPubMedGoogle Scholar
  30. 30.
    Yefimova MG, Messaddeq N, Harnois T et al (2013) A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates. Autophagy 9(5):653–666CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shiratsuchi A, Kawasaki Y, Ikemoto M et al (1999) Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem 274(9):5901–5908CrossRefPubMedGoogle Scholar
  32. 32.
    Kawasaki Y, Nakagawa A, Nagaosa K et al (2002) Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular Sertoli cells. J Biol Chem 277:27559–27566CrossRefPubMedGoogle Scholar
  33. 33.
    Lu Q, Gore M, Zhang Q et al (1999) Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723–728CrossRefPubMedGoogle Scholar
  34. 34.
    Xiong W, Chen Y, Wang H et al (2008) Gas6 and the Tyro 3 receptor tyrosine kinase subfamily regulate the phagocytic function of Sertoli cells. Reproduction 135:77–87CrossRefPubMedGoogle Scholar
  35. 35.
    Chen Y, Wang H, Qi N et al (2009) Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice. Reproduction 138:655–666CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Marina G. Yefimova
    • 1
    • 2
  • Nadia Messaddeq
    • 3
    • 4
    • 5
    • 6
  • Annie-Claire Meunier
    • 1
  • Anne Cantereau
    • 1
    • 7
  • Bernard Jegou
    • 8
  • Nicolas Bourmeyster
    • 1
    • 9
    Email author
  1. 1.Laboratoire Signalisation et Transports Ioniques MembranairesUniversité de Poitiers/CNRSPoitiersFrance
  2. 2.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersbourgRussia
  3. 3.Institute of Genetics and Molecular and Cellular BiologyIllkirchFrance
  4. 4.Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
  5. 5.Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
  6. 6.Université de StrasbourgStrasbourgFrance
  7. 7.Plateforme IMAGE-UPPoitiersFrance
  8. 8.Université de Rennes/INSERM, IRSETRennesFrance
  9. 9.CHU de PoitiersPoitiersFrance

Personalised recommendations