Sertoli Cells pp 253-277 | Cite as

Computational Methods Involved in Evaluating the Toxicity of the Reproductive Toxicants in Sertoli Cell

  • Pranitha Jenardhanan
  • Manivel Panneerselvam
  • Premendu P. MathurEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1748)


The Sertoli cell, the somatic component of seminiferous tubule, provides nutritional support and immunological protection and supports overall growth and division of germ cells. Cytoskeletons, junction proteins, and kinases in Sertoli cells are prime targets for reproductive toxicants and other environmental contaminants. Among the varied targets, the kinases that are crucial for regulating varied activities in spermatogenesis such as assembly/disassembly of blood-testis barrier and apical ES and those that are involved in conferring polarity are highly targeted. In an attempt to study the effect of toxicants on these kinases, the present chapter deals with computational methodology concerning their three-dimensional structure prediction, identification of inhibitors, and understanding of conformational changes induced by these inhibitors.


Sertoli cells Reproductive toxicants Tyrosine kinases Serine/threonine kinases Type II and type III kinase inhibitors Nonhormonal male contraceptives 


  1. 1.
    Parvinen M (1982) Regulation of the seminiferous epithelium. Endocr Rev 3(4):404–417. CrossRefPubMedGoogle Scholar
  2. 2.
    Weber JE, Russell LD, Wong V, Peterson RN (1983) Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli--Sertoli and Sertoli--germ-cell relationships. Am J Anat 167(2):163–179. CrossRefPubMedGoogle Scholar
  3. 3.
    Mital P, Kaur G, Dufour JM (2010) Immunoprotective sertoli cells: making allogeneic and xenogeneic transplantation feasible. Reproduction 139(3):495–504. CrossRefPubMedGoogle Scholar
  4. 4.
    Mruk DD, Cheng CY (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25(5):747–806. CrossRefPubMedGoogle Scholar
  5. 5.
    Sylvester SR, Griswold MD (1994) The testicular iron shuttle: a “nurse” function of the Sertoli cells. J Androl 15(5):381–385PubMedGoogle Scholar
  6. 6.
    Franca LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD (2016) The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 4(2):189–212. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Oatley MJ, Racicot KE, Oatley JM (2011) Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod 84(4):639–645. CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng CY (2014) Toxicants target cell junctions in the testis: insights from the indazole-carboxylic acid model. Spermatogenesis 4(2):e981485. CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64(1):16–64. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gao Y, Mruk DD, Cheng CY (2015) Sertoli cells are the target of environmental toxicants in the testis - a mechanistic and therapeutic insight. Expert Opin Ther Targets 19(8):1073–1090. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li N, Mruk DD, Lee WM, Wong CK, Cheng CY (2016) Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis? Semin Cell Dev Biol 59:141–156. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Monsees TK, Franz M, Gebhardt S, Winterstein U, Schill WB, Hayatpour J (2000) Sertoli cells as a target for reproductive hazards. Andrologia 32(4–5):239–246CrossRefPubMedGoogle Scholar
  13. 13.
    Wan HT, Mruk DD, Wong CK, Cheng CY (2013) The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility. Trends Mol Med 19(7):396–405. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boekelheide K, Neely MD, Sioussat TM (1989) The Sertoli cell cytoskeleton: a target for toxicant-induced germ cell loss. Toxicol Appl Pharmacol 101(3):373–389CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson KJ (2014) Testicular histopathology associated with disruption of the Sertoli cell cytoskeleton. Spermatogenesis 4(2):e979106. CrossRefPubMedGoogle Scholar
  16. 16.
    Russell LD, Peterson RN (1985) Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol 94:177–211CrossRefPubMedGoogle Scholar
  17. 17.
    Mruk DD, Cheng CY (2015) The mammalian blood-testis barrier: its biology and regulation. Endocr Rev 36(5):564–591. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yan HH, Mruk DD, Lee WM, Cheng CY (2007) Ectoplasmic specialization: a friend or a foe of spermatogenesis? BioEssays 29(1):36–48. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    O'Donnell L, O'Bryan MK (2014) Microtubules and spermatogenesis. Semin Cell Dev Biol 30:45–54. CrossRefPubMedGoogle Scholar
  20. 20.
    Aumuller G, Schulze C, Viebahn C (1992) Intermediate filaments in Sertoli cells. Microsc Res Tech 20(1):50–72. CrossRefPubMedGoogle Scholar
  21. 21.
    Wen Q et al (2016) Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers 4(4):e1265042. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Guttman JA, Kimel GH, Vogl AW (2000) Dynein and plus-end microtubule-dependent motors are associated with specialized Sertoli cell junction plaques (ectoplasmic specializations). J Cell Sci 113(Pt 12):2167–2176PubMedGoogle Scholar
  23. 23.
    Jenardhanan P, Mathur PP (2014) Kinases as targets for chemical modulators: structural aspects and their role in spermatogenesis. Spermatogenesis 4(2):e979113. CrossRefPubMedGoogle Scholar
  24. 24.
    Wan HT et al (2014) Role of non-receptor protein tyrosine kinases in spermatid transport during spermatogenesis. Semin Cell Dev Biol 30:65–74. CrossRefPubMedGoogle Scholar
  25. 25.
    Chojnacka K, Mruk DD (2015) The Src non-receptor tyrosine kinase paradigm: new insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 415:133–142. CrossRefPubMedGoogle Scholar
  26. 26.
    Almog T, Naor Z (2008) Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol Cell Endocrinol 282(1–2):39–44. CrossRefPubMedGoogle Scholar
  27. 27.
    Gungor-Ordueri NE, Mruk DD, Wan HT, Wong EW, Celik-Ozenci C, Lie PP, Cheng CY (2014) New insights into FAK function and regulation during spermatogenesis. Histol Histopathol 29(8):977–989. PubMedPubMedCentralGoogle Scholar
  28. 28.
    Tang EI, Mruk DD, Cheng CY (2013) MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol 217(2):R13–R23. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 89(11):5192–5196CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Roskoski R Jr (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324(4):1155–1164. CrossRefPubMedGoogle Scholar
  31. 31.
    Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24(6):1637–1648. CrossRefPubMedGoogle Scholar
  32. 32.
    Cowan-Jacob SW (2006) Structural biology of protein tyrosine kinases. Cell Mol Life Sci 63(22):2608–2625. CrossRefPubMedGoogle Scholar
  33. 33.
    Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398. CrossRefPubMedGoogle Scholar
  34. 34.
    Hall JE, Fu W, Schaller MD (2011) Focal adhesion kinase: exploring Fak structure to gain insight into function. Int Rev Cell Mol Biol 288:185–225. CrossRefPubMedGoogle Scholar
  35. 35.
    Naz F, Anjum F, Islam A, Ahmad F, Hassan MI (2013) Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys 67(2):485–499. CrossRefPubMedGoogle Scholar
  36. 36.
    Tang EI et al (2012) Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis 2(2):117–126. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Corsi JM, Rouer E, Girault JA, Enslen H (2006) Organization and post-transcriptional processing of focal adhesion kinase gene. BMC Genomics 7:198. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Al-Khalili O, Duke BJ, Zeltwanger S, Eaton DC, Spier B, Stockand JD (2001) Cloning of the proto-oncogene c-src from rat testis. DNA Seq 12(5–6):425–429CrossRefPubMedGoogle Scholar
  39. 39.
    Kierszenbaum AL, Rivkin E, Talmor-Cohen A, Shalgi R, Tres LL (2009) Expression of full-length and truncated Fyn tyrosine kinase transcripts and encoded proteins during spermatogenesis and localization during acrosome biogenesis and fertilization. Mol Reprod Dev 76(9):832–843. CrossRefPubMedGoogle Scholar
  40. 40.
    Bordeleau LJ, Leclerc P (2008) Expression of hck-tr, a truncated form of the src-related tyrosine kinase hck, in bovine spermatozoa and testis. Mol Reprod Dev 75(5):828–837. CrossRefPubMedGoogle Scholar
  41. 41.
    Singh AK, Tasken K, Walker W, Frizzell RA, Watkins SC, Bridges RJ, Bradbury NA (1998) Characterization of PKA isoforms and kinase-dependent activation of chloride secretion in T84 cells. Am J Phys 275(2 Pt 1):C562–C570CrossRefGoogle Scholar
  42. 42.
    Lie PP, Mruk DD, Mok KW, Su L, Lee WM, Cheng CY (2012) Focal adhesion kinase-Tyr407 and -Tyr397 exhibit antagonistic effects on blood-testis barrier dynamics in the rat. Proc Natl Acad Sci U S A 109(31):12562–12567. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rovelet-Lecrux A et al (2015) De novo deleterious genetic variations target a biological network centered on Abeta peptide in early-onset Alzheimer disease. Mol Psychiatry 20(9):1046–1056. CrossRefPubMedGoogle Scholar
  44. 44.
    The UniProt C (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169. CrossRefGoogle Scholar
  45. 45.
    Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230. CrossRefPubMedGoogle Scholar
  46. 46.
    Piovesan D et al (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45(D1):D1123–D1124. CrossRefPubMedGoogle Scholar
  47. 47.
    Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41(Web Server issue):W349–W357. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Greene LH et al (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35(Database issue):D291–D297. CrossRefPubMedGoogle Scholar
  49. 49.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. CrossRefPubMedGoogle Scholar
  50. 50.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. CrossRefPubMedGoogle Scholar
  51. 51.
    Berman HM et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58(Pt 6 No 1):899–907Google Scholar
  52. 52.
    Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(Web Server issue):W526–W531. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. CrossRefPubMedGoogle Scholar
  57. 57.
    Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kim S et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. CrossRefPubMedGoogle Scholar
  59. 59.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. CrossRefPubMedGoogle Scholar
  60. 60.
    Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671. CrossRefPubMedGoogle Scholar
  61. 61.
    Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60(Pt 8):1355–1363. CrossRefPubMedGoogle Scholar
  62. 62.
    Jenardhanan P, Mannu J, Mathur PP (2014) The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: a computational approach to obstruct the role of MARK4 in prostate cancer progression. Mol BioSyst 10(7):1845–1868. CrossRefPubMedGoogle Scholar
  63. 63.
    Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. CrossRefPubMedGoogle Scholar
  64. 64.
    Iwatani M et al (2013) Discovery and characterization of novel allosteric FAK inhibitors. Eur J Med Chem 61:49–60. CrossRefPubMedGoogle Scholar
  65. 65.
    Al-Obeidi FA, Lam KS (2000) Development of inhibitors for protein tyrosine kinases. Oncogene 19(49):5690–5701. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Pranitha Jenardhanan
    • 1
  • Manivel Panneerselvam
    • 1
  • Premendu P. Mathur
    • 2
    • 3
    Email author
  1. 1.Centre for BioinformaticsPondicherry UniversityPuducherryIndia
  2. 2.Department of Biochemistry and Molecular BiologyPondicherry UniversityPuducherryIndia
  3. 3.KIIT UniversityBhubaneshwarIndia

Personalised recommendations