Sertoli Cells pp 245-252 | Cite as

Monitoring the Integrity of the Blood-Testis Barrier (BTB): An In Vivo Assay

  • Haiqi Chen
  • Wing-yee Lui
  • Dolores D. Mruk
  • Xiang Xiao
  • Renshan Ge
  • Qingquan Lian
  • Will M. Lee
  • Bruno Silvestrini
  • C. Yan ChengEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1748)


The blood-testis barrier is a unique ultrastructure in the mammalian testis, located near the basement membrane of the seminiferous tubule that segregates the seminiferous epithelium into the basal and the adluminal (apical) compartment. Besides restricting paracellular and transcellular passage of biomolecules (e.g., paracrine factors, hormones), water, electrolytes, and other substances including toxicants and/or drugs to enter the adluminal compartment of the epithelium, the BTB is an important ultrastructure that supports spermatogenesis. As such, a sensitive and reliable assay to monitor its integrity in vivo is helpful for studying testis biology. This assay is based on the ability of an intact BTB to exclude the diffusion of a small molecule such as sulfo-NHS-LC-biotin (C20H29N4NaO9S2, Mr. 556.59, a water-soluble and membrane-impermeable biotinylation reagent) from the basal to the apical compartment of the seminiferous epithelium. Herein, we summarize the detailed procedures on performing the assay and to obtain semiquantitative data to assess the extent of BTB damage when compared to positive controls, such as treatment of rats with cadmium chloride (CdCl2) which is known to compromise the BTB integrity.


Testis Blood-testis barrier Spermatogenesis Sertoli cells Tight junction Ectoplasmic specialization Actin filaments Assay 



This work was supported by grants from the National Institutes of Health, NICHD R01 HD056034 to C.Y.C., and U54 HD029990 Project 5 to C.Y.C.; Hong Kong Research Grants Council (RGC)/National Natural Science Foundation of China Joint Research Scheme (N_HKU 717/12) to W.M.L., Hong Kong RGC Grant GRF17100816 to W.Y.L. and GRF 771513 to W.M.L., Hong Kong University Seed Funding to W.Y.L. and W.M.L.; NSFC Grant 81730042 to R.S.G. and NSFC Grant 31371176 to X.X., and Zhejiang Province Department of Science Technology Funding 2016F10010 to X.X.; H.C. was supported in part by The S.Y. Law Memorial Fellowship and The F. Lau Memorial Fellowship.


  1. 1.
    Setchell BP (2008) Blood-testis barrier, functional and transport proteins and spermatogenesis. Adv Exp Med Biol 636:212–233CrossRefPubMedGoogle Scholar
  2. 2.
    Cheng CY, Mruk DD (2012) The blood-testis barrier and its implication in male contraception. Pharmacol Rev 64:16–64CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aoki A, Fawcett DW (1975) Impermeability of sertoli cell junctions to prolonged exposure to peroxidase. Andrologia 7:63–76CrossRefPubMedGoogle Scholar
  4. 4.
    Mruk DD, Cheng CY (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806CrossRefPubMedGoogle Scholar
  5. 5.
    Pelletier RM (2011) The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 46:49–127CrossRefPubMedGoogle Scholar
  6. 6.
    Franca LR, Auharek SA, Hess RA, Dufour JM, Hinton BT (2012) Blood-tissue barriers: morphofunctional and immunological aspects of the blood-testis and blood-epididymal barriers. Adv Exp Med Biol 763:237–259PubMedGoogle Scholar
  7. 7.
    Kaur G, Thompson LA, Dufour JM (2014) Sertoli cells–immunological sentinels of spermatogenesis. Semin Cell Dev Biol 30:36–44CrossRefPubMedGoogle Scholar
  8. 8.
    Stanton PG (2016) Regulation of the blood-testis barrier. Semin Cell Dev Biol 59:166–173. CrossRefPubMedGoogle Scholar
  9. 9.
    Li N, Tang EI, Cheng CY (2016) Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 151(3):R29–R41. CrossRefPubMedGoogle Scholar
  10. 10.
    Lie PPY, Cheng CY, Mruk DD (2013) Signalling pathways regulating the blood-testis barrier. Int J Biochem Cell Biol 45:621–625CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao X, Mruk DD, Wong CKC, Cheng CY (2014) Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology 29(4):286–298. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen H, Cheng CY (2016) Planar cell polarity (PCP) proteins and spermatogenesis. Semin Cell Dev Biol 59:99–109. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith BE, Braun RE (2012) Germ cell migration across Sertoli cell tight junctions. Science 338:798–802CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Govero J et al (2016) Zika virus infection damages the testes in mice. Nature 540:438–442CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jenabian MA et al (2016) Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS 30(18):2777–2786. CrossRefPubMedGoogle Scholar
  16. 16.
    Darcis G, Coombs RW, Van Lint C (2016) Exploring the anatomical HIV reservoirs: role of the testicular tissue. AIDS 30(18):2891–2893. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Eisele E, Siliciano RF (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37:377–388CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Siu ER, Mruk DD, Porto CS, Cheng CY (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 238(3):240–249CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wan HT, Mruk DD, Wong CKC, Cheng CY (2014) Perfluorooctanesulfonate (PFOS) perturbs male rat Sertoli cell blood-testis barrier function by affecting F-actin organization via p-FAK-Tyr407–an in vitro study. Endocrinology 155:249–262CrossRefPubMedGoogle Scholar
  20. 20.
    Cai H et al (2011) Scrotal heat stress causes a transient alteration in tight junctions and induction of TGF-beta expression. Int J Androl 34:352–362CrossRefPubMedGoogle Scholar
  21. 21.
    Hou WG, Zhao J, Li Z, Li W, Li T, Xiong LZ, Zhang YQ (2012) Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier. Urology 80(1):225 e221–225 e226CrossRefGoogle Scholar
  22. 22.
    Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13. CrossRefPubMedGoogle Scholar
  23. 23.
    Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE (2005) Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci U S A 102:16696–16700CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiao X et al (2014) N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet 10:e1004447CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mruk DD, Cheng CY (2015) The mammalian blood-testis barrier: its biology and regulation. Endocr Rev 36:564–591CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li MW et al (2006) Tumor necrosis factor {alpha} reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol 190:313–329CrossRefPubMedGoogle Scholar
  27. 27.
    Sarkar O, Mathur PP, Cheng CY, Mruk DD (2008) Interleukin 1 alpha (IL1A) is a novel regulator of the blood-testis barrier in the rat. Biol Reprod 78:445–454CrossRefPubMedGoogle Scholar
  28. 28.
    Furuse M et al (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wong CH, Mruk DD, Lui WY, Cheng CY (2004) Regulation of blood-testis barrier dynamics: an in vivo study. J Cell Sci 117:783–798CrossRefPubMedGoogle Scholar
  30. 30.
    Lui WY, Lee WM, Cheng CY (2001) Transforming growth factor-b3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 142:1865–1877CrossRefPubMedGoogle Scholar
  31. 31.
    Lui WY, Wong CH, Mruk DD, Cheng CY (2003) TGF-b3 regulates the blood-testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 144:1139–1142CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Haiqi Chen
    • 1
  • Wing-yee Lui
    • 2
  • Dolores D. Mruk
    • 1
  • Xiang Xiao
    • 3
  • Renshan Ge
    • 4
  • Qingquan Lian
    • 4
  • Will M. Lee
    • 2
  • Bruno Silvestrini
    • 5
  • C. Yan Cheng
    • 1
    Email author
  1. 1.The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population CouncilNew YorkUSA
  2. 2.School of Biological SciencesUniversity of Hong KongPokfulamChina
  3. 3.Department of Reproductive PhysiologyZhejiang Academy of Medical SciencesHangzhouChina
  4. 4.Institute of Reproductive BiomedicineWenzhou Medical UniversityWenzhouChina
  5. 5.SBM Pharmaceuticals SrlRomeItaly

Personalised recommendations