Skip to main content

Proteome Profiling of Sertoli Cells Using a GeLC-MS/MS Strategy

  • Protocol
  • First Online:
Book cover Sertoli Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1748))

Abstract

Proteomics is a technology that allows to decipher the molecular networks involved in the regulation of biological processes such as spermatogenesis. Sertoli cells (SCs) are key players in the paracrine control of this process. Envisioning to increase the knowledge on the molecular networks harbored in SCs, we propose a methodology based on GeLC-MS/MS for the characterization of these cells’ proteome. Proteins are separated by SDS-PAGE hyphenated to HPLC and identified by mass spectrometry. The integration of data with bioinformatics tools such as ClueGO + CluePedia from Cytoscape allows the identification of the biological pathways more prevalent in SCs, and that might be modulated by pathophysiological conditions. Moreover, the proteome analysis with tools as SignalP/SecretomeP highlights the proteins more prone to be secreted and involved in the paracrine control of germ cells, which might also be deregulated by diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Wang W, Chen J (2015) From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics 15(2–3):188–202. https://doi.org/10.1002/pmic.201400147

    Article  CAS  PubMed  Google Scholar 

  2. Zheng B et al (2015) Quantitative proteomics reveals the essential roles of stromal interaction molecule 1 (STIM1) in the testicular cord formation in mouse testis. Mol Cell Proteomics 14(10):2682–2691. https://doi.org/10.1074/mcp.M115.049569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jegou B (1993) The Sertoli-germ cell communication network in mammals. Int Rev Cytol 147:25–96

    Article  CAS  PubMed  Google Scholar 

  4. Stanton PG, Sluka P, Foo CF, Stephens AN, Smith AI, McLachlan RI, O'Donnell L (2012) Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells. PLoS One 7(7):e41718. https://doi.org/10.1371/journal.pone.0041718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalmel F, Com E, Lavigne R, Hernio N, Teixeira-Gomes AP, Dacheux JL, Pineau C (2014) An integrative omics strategy to assess the germ cell secretome and to decipher sertoli-germ cell crosstalk in the Mammalian testis. PLoS One 9(8):e104418. https://doi.org/10.1371/journal.pone.0104418

    Article  PubMed  PubMed Central  Google Scholar 

  6. Com E, Melaine N, Chalmel F, Pineau C (2014) Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteome 107:128–143. https://doi.org/10.1016/j.jprot.2014.04.013

    Article  CAS  Google Scholar 

  7. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9(6):330–338. https://doi.org/10.1038/nrurol.2012.77

    Article  CAS  PubMed  Google Scholar 

  8. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79. https://doi.org/10.1146/annurev-bioeng-061008-124934

    Article  CAS  PubMed  Google Scholar 

  9. Padrao AI, Vitorino R, Duarte JA, Ferreira R, Amado F (2013) Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 12(10):4257–4267. https://doi.org/10.1021/pr4003917

    Article  CAS  PubMed  Google Scholar 

  10. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55(2):182–196. https://doi.org/10.1093/chromsci/bmw167

    Article  CAS  PubMed  Google Scholar 

  11. Paulo JA (2016) Sample preparation for proteomic analysis using a GeLC-MS/MS strategy. J Biol Methods 3(3). https://doi.org/10.14440/jbm.2016.106

  12. Chen C, Huang H, Wu CH (2011) Protein bioinformatics databases and resources. Methods Mol Biol 694:3–24. https://doi.org/10.1007/978-1-60761-977-2_1

    Article  PubMed  Google Scholar 

  13. Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. https://doi.org/10.1093/bioinformatics/btt019

  14. Bindea G et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093. https://doi.org/10.1093/bioinformatics/btp101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17(4):349–356. https://doi.org/10.1093/protein/gzh037

    Article  CAS  PubMed  Google Scholar 

  16. Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29(5):661–663. https://doi.org/10.1093/bioinformatics/btt019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmero S, Bardi G, Coniglio L, Falugi C (1999) Presence and localization of molecules related to the cholinergic system in developing rat testis. Eur J Histochem 43(4):277–283

    CAS  PubMed  Google Scholar 

  18. Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A (1992) Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360(6402):313–319. https://doi.org/10.1038/360313a0

    Article  CAS  PubMed  Google Scholar 

  19. Tripathi UK et al (2014) Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds. Front Cell Dev Biol 2:24. https://doi.org/10.3389/fcell.2014.00024

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carvalho PC et al (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11(1):102–117. https://doi.org/10.1038/nprot.2015.133

    Article  CAS  PubMed  Google Scholar 

  21. Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239. https://doi.org/10.1007/978-1-60761-175-2_12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Portuguese Foundation for Science and Technology (FCT), European Union, QREN, FEDER, and COMPETE for funding the iBiMED (UID/BIM/04501/2013), QOPNA (UID/QUI/00062/2013), UnIC (UID/IC/00051/2013), research project (POCI-01-0145-FEDER-016728; PTDC/DTP-DES/6077/2014), and RV’s (IF/00286/2015) and FT’s (SFRH/BD/111633/2015) fellowship grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Vitorino .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary Table S1

List of proteins previously identified in mouse SCs [5] (XLSX 29 kb)

Supplementary Table S2

List of proteins retrieved from SecretomeP and SignalP analysis (XLSX 635 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ferreira, R., Trindade, F., Vitorino, R. (2018). Proteome Profiling of Sertoli Cells Using a GeLC-MS/MS Strategy. In: Alves, M., Oliveira, P. (eds) Sertoli Cells. Methods in Molecular Biology, vol 1748. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7698-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7698-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7697-3

  • Online ISBN: 978-1-4939-7698-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics