Skip to main content

Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins

  • Protocol
  • First Online:
Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

  • 885 Accesses

Abstract

Protein S-nitrosylation, the NO-dependent regulatory mechanism, is a posttranslational modification of reactive cysteine thiols to form S-nitrosothiols. The biotin-switch technique (BST) has become a mainstay method for detection of S-nitrosylated proteins in biological samples. On the basis of BST, we describe a surface plasmon resonance (SPR) spectroscopy method for detecting S-nitrosylated proteins. This method can be applied for the indirect determination of S-nitrosylated proteins in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  CAS  PubMed  Google Scholar 

  2. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the proteolytic redox-based signaling mechanism. Cell 106:675–683

    Google Scholar 

  3. París R, Iglesias MJ, Terrile MC, Casalongué CA (2013) Functions of S-nitrosylation in plant hormone networks. Front Plant Sci 4:294

    Google Scholar 

  4. Wolhuter K, Eaton P (2017) How widespread is stable protein S-nitrosylation as an end-effector of protein regulation? Free Radic Biol Med 109:156–166

    Article  CAS  PubMed  Google Scholar 

  5. Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  PubMed  Google Scholar 

  6. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1

    Google Scholar 

  7. Forrester M, Foster M, Benhar M, Stamler JS (2009) Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 46:119–126

    Google Scholar 

  8. Gow AJ, Davis CW, Munson D, Ischiropoulos H (2004) Immunohistochemical detection of S-nitrosylated proteins. Methods Mol Biol 279:167–172

    CAS  PubMed  Google Scholar 

  9. Wiktorowicz JE, Stafford SJ, Garg NJ (2017) Protein cysteinyl-S-nitrosylation: analysis and quantification. Methods Enzymol 586:1–14

    Google Scholar 

  10. Wiktorowicz JE, Stafford S, Rea H, Urvil P, Soman K, Kurosky A et al (2011) Quantification of cysteinyl-S-nitrosylation by fluorescence in unbiased proteomic studies. Biochemistry 50:5601–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang S, Circu ML, Zhou H, Figeys D, Aw TY, Feng J (2011) Highly sensitive detection of S-nitrosylated proteins by capillary gel electrophoresis with laser induced fluorescence. J Chromatogr A 1218:6756–6762

    Google Scholar 

  12. Guo X (2012) Surface plasmon resonance based biosensor technique: a review. J Biophotonics 5:483–501

    Article  CAS  PubMed  Google Scholar 

  13. Masson JF (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens 2:16–30

    Google Scholar 

  14. Sadrolhosseini AR, Naseri M, Kamari HM (2017) Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrole-chitosan-cobalt ferrite nanoparticles composite layer. Opt Commun 383:132–137

    Article  CAS  Google Scholar 

  15. Shushama KN, Rana MM, Inum R, Hossain MB (2017) Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt Commun 383:186–190

    Article  CAS  Google Scholar 

  16. Braidot E, Petrussa E, Macrì F, Vianello A (1998) Plant mitochondrial electrical potential monitored by fluorescence quenching of rhodamine 123. Biol Plant 41:193–201

    Article  CAS  Google Scholar 

  17. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295

    Google Scholar 

  18. Wang R, Kong Q, Zhou J, Zhang L, Zhu S (2015) Detection of S-nitrosylated protein by surface plasmon resonance. Sens Bio-Sensing Res 4:30–36

    Google Scholar 

Download references

Acknowledgment

This work has been funded by the National Natural Science Foundation of China (Nos. 31370686, 31470686) and Natural Science Foundation of Shandong Province (ZR2013CQ014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, L., Shang, P., Chen, C., Zhou, J., Zhu, S. (2018). Surface Plasmon Resonance Spectroscopy for Detection of S-Nitrosylated Proteins. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics