Nitric Oxide pp 89-101 | Cite as

A Proteomics Workflow for Dual Labeling Biotin Switch Assay to Detect and Quantify Protein S-Nitroylation

  • Heaseung Sophia Chung
  • Christopher I. Murray
  • Jennifer E. Van EykEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)


S-nitrosylation (or S-nitrosation, SNO) is an oxidative posttranslational modification to the thiol group of a cysteine amino acid residue. There are several methods to detect SNO modifications, mostly based on the classic biotin-switch assay, where the labile SNO sites are replaced with a stable biotin moiety to facilitate enrichment of the modified proteins. As the technique has evolved, new and more advanced thiol-reactive reagents have been introduced in the protocol to improve the identification of modified peptides or to quantify the level of modification at individual cysteine residues. However, the growing diversity of thiol-reactive affinity tags has not produced a consistent set of protein modifications, suggesting incomplete coverage using a single tag. Here, we present a parallel dual labeling strategy followed by an optimized proteomics workflow, which maximizes the overall detection of SNO by reducing the labeling bias derived from the use of a single tag-capture approach.

Key words

IodoTMT6-switch assay S-nitrosylation S-nitrosation Quantification Redox proteomics Mass spectrometry 



The authors would like to thank Ronald J. Holewinski for his technical expertise in LC/MS/MS separation and acquisition. This work was supported by an American Heart Association MidAtlantic Fellowship Grant (H.S.C.), Canadian Institutes of Health Research Postdoctoral fellowship (C.I.M.), NHLBI R01HL119012 and NHLBI PO1 HL10026, and 5P01HL112730-03 (J.E.V.E.). Funds were also received from the Erika Glazer Endowed Chair and the Barbra Streisand Women’s Heart Center.


  1. 1.
    Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1PubMedGoogle Scholar
  2. 2.
    Murray CI, Van Eyk JE (2012) Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet 5:591CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27:557–559CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999CrossRefPubMedGoogle Scholar
  6. 6.
    Fares A, Rossignol M, Peltier J-B (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336CrossRefPubMedGoogle Scholar
  7. 7.
    Lindemann C, Leichert LI (2012) Quantitative redox proteomics: the NOxICAT method. Methods Mol Biol 893:387–403CrossRefPubMedGoogle Scholar
  8. 8.
    Wu C, Parrott AM, Liu T, Beuve A, Li H (2013) Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets. Methods Feb 18. pii: S1046-2023(13)00021-2Google Scholar
  9. 9.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefPubMedGoogle Scholar
  10. 10.
    Paige JS, Xu G, Stancevic B, Jaffrey SR (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15:1307–1316CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Murray CI, Uhrigshardt H, O’Meally RN, Cole RN, Van Eyk JE (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol Cell Proteomics 11:M111.013441CrossRefPubMedGoogle Scholar
  12. 12.
    Pan K-T, Chen Y-Y, Pu T-H, Chao Y-S, Yang C-Y, Bomgarden RD, Rogers JC, Meng T-C, Khoo K-H (2014) Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxid Redox Signal 20:1365–1381CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Qu Z, Meng F, Bomgarden RD et al (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13:3200–3211CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chung HS, Wang S-B, Venkatraman V, Murray CI, Van Eyk JE (2013) Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 112:382–392CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chung HS, Murray CI, Venkatraman V et al (2015) Dual labeling biotin switch assay to reduce bias derived from different cysteine subpopulations: a method to maximize S-nitrosylation detection. Circ Res 117:846–857CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hong H-Y, Yoo G-S, Choi J-K (2000) Direct Blue 71 staining of proteins bound to blotting membranes. Electrophoresis 21:841–845CrossRefPubMedGoogle Scholar
  17. 17.
    Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keller A, Eng J, Zhang N, Li X, Aebersold R (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392CrossRefPubMedGoogle Scholar
  20. 20.
    Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL, Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:M111.007690CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Heaseung Sophia Chung
    • 1
  • Christopher I. Murray
    • 1
  • Jennifer E. Van Eyk
    • 1
    Email author
  1. 1.Medicine and Heart InstituteCedars Sinai Medical CenterLos AngelesUSA

Personalised recommendations